

decide on Rola speakers for all their models. They know they can fit Rola and relax !

- A PRECEDENT

EMBALMS A PRINCIPLE' ${ }^{\text {. . . }}$

Benjamin Disraeli.

A principle creating a precedent
— Lectrona - Quality -

IT CAN SEEM LIKE CHILD'S PLAY

With a good testing instrument you can make fault finding on a defective wireless set seem like child's play. The Weston Model E772 Analyser will meet all your normal radio servicing requirements and will save you time, trouble and money. The instrument is simple to use and is both accurate and reliable. It has a wide range coverage with a sensitivity of 20,000 ohms per volt on all D.C. ranges. Please write for full details.

SYSTEMATIC

SERVICING

STARTS WITH A
WESTON

SOUND DESIGN

Radio Valves and

Cathode Ray Tubes

We believe that the only way to build a receiver is to begin at the beginning with a sound circuit design-a design that's been tested and re-tested-a design that will stand up to the most critical examination. From this design a prototype is constructed in which every component receives the same rigorous testing. We leave the experts to pass judgment on the resulting Sobell receivers. We are confident that for ease of control and absolute fidelity of reproduction these models will be found to have no equals-that, in fact, you will pronounce them

SENSITIVITY 10,000 OHMS PER VOLT

Designed to meet the demands of Service and Plant Engineers, also Radio Amateurs, 21 Ranges:-Volts: A.C.D.C. 10, 25, 100, 250, 500 and 1,000.

Microamps : A.C./D.C. $0-100$.
Milliamps : D.C. $2.5,10,25,100$ and 500.
Ohms: 0/10,000 and 0/1 Megohrr.
All voltage measurements A.C. and D.C. are at 10,000 ohms per volt, to comply with the requirements of modern radio and electronic equipment, where tests have often to be made across high impedance circuics.

Price: ©10. 10 s .
Immediate delivery from wholesale stockists.

Series 100 MULTI-RANGE TEST SET

MEASURING INSTRUMENTS (PULLIN) LTD
Address all enquiries to Dept. J, Electrin Works, Winchester Streat, Acton, London, W.3. Telephone: Acorn 4651-4

TRUVOX ENGINEERING CO., LTD., EXHIBITION GROUNDS, WEMBLEY, MIDDLESEX.

TWO OUTSTANDING MODELS

15 Waet Quality Amplifier Special Amplifier designed primarily for the high quality repro duction of Gramophone records. Incorporating a ouilt-in variable scratch filter, bass and treble lift controls and negative feed bick. A maximum output of 15 watts is obtained, but low average istening levels may be run without deterioration in quality. The valve line up is :- 2 ECC 32 Twin Triodes, 2 EF 50 Pentodes, 2 EL 37 Pentodes $15 U 4 G$ Rectifier.
Price 629.15.0

FROM THE

RANGE OF
QUALITY
AMPLIFIERS

The Rad. 20 model illustrated is ideal for Schools, Clubs, Hotels, etc. where high quality reception of the normal broadcasting programmes is required. A Three wave band superhet radio unit of the very latest design is incorporated, and provision is also made for microphone and gramophone inputs. Available for 200250 v. A.C. mains.

Retail Price $£ 44.15 .0$

WODEN TRANSFORMER CO. LTD.,

 MOXLEY ROAD, BILSTON, STAFFS. Phone : Biston 4159
M. R. SUPPLIES Ltal.

have the following fyot-chana, brand new Radio and Laboratory Material available for tmmedime dellivery from stock. All prices nett.
 $2 \mathrm{l}_{\mathrm{m}}$. ENJ. 3in. fumb mount. Int. res. 175 ohm (average), by prominent maker. $87,6$.
Thrampar Recripisias (full-mave) $1 \mathrm{~m} . a$. only. $8 /-$
FAmiac Travisurimers. Essentlal for correcting mains fluctuations, maintaining constant voltage (omanualify operated by knol) Model "A, "' input 200/240 v. 00 c .,
 output 230 v. 80 c., lomaing $1.01 \mathrm{kva}$. , $6: 10 / \mathrm{e}$; Vollages are inonitelv variable within limit atalod. (Derpatch p. train, either 3, 6 .)
Pien bin

Kinc. Fultiertise, m/coll, by vest makers. $0 / 3500$ vole D.C., sjin. dia. Pro-

 extractor or coollag fan, 35/-
ITT. Hectilirips, full-mave, brdged, seleolum, B.T.C., all for charging up to 12 v . At i. 5 amp., 12/6. At 4-amps., 26/-. At 8.8 atops., 39;6. At $10 / 12$ ampl, 49/6. Also for D.O. delvery up to 30 v. 4 amps., 96/6.
YHAP-DDWi TAMI TRANSPORMERS 10 suit above rectiders. All primaries tupped 200/220/240 マ. 50 c and secs. Lapped for 6 and 12 v . cbarre. For 1.6 a. Roch. 23/6. For 4 -amp., 38/6. For $6 / 8$ amp., 55/-. For $10 / 12$ amp., 77/6 (des. 2/6). For the $20 \% .4 \mathrm{mmp}$. rect, $57 / 6$ (des. $2 /-$).
Pifuntirave Whatynis. hat few of the excellent B2 3K. 11 Recelvers and Powar Prols. Operation any A.O. malas and G $ष$. D.O. Range 3.1 w $15 . \mathrm{bmc} / \mathrm{s}$. Bupparter fith BF.O. Compett and hlghly effclent set wlth all leads, phonce, etc., to mierproot steel tranilt caes. e7/17/8 (des, p.t. $5 /$). We bave the colth for the B. Tingmityer at $10 / 6$ tho set of four.

 F. iberefore rithe for troat protociton. Ad table, $4 / 6$.
 range 10 c to is 200 . Many applications-discrituluator and limilung circults, exomed detectors. moter rectiner, A.Y. and R.F., tm place of dodes, vilve voltmeter.
Ec, $27 / 8$. dis. Ovenall hritht 1210., Wath 12 in. P.O. type, completely weatherprooi, 29/6.
 alin. Orethet 11 m . Height overall Biln. Saction and biast greater than average Fhamom cleaner, $08 / 0$ rdea. 2 -2
 wave ar rolene doubler (t wo can be bridged for 300 mi C). Very special oriter $7 / 6$.
 11 rution from $12 / 1$ to $75 / 1$ with C.T. Sor puah-pall Elanding up to 26 -wath at hybb-

 Atipitas of P.V.C. and rubber taraletion. Wth trasiformer, ready for ure, 83 m .

 \square Telephone: MUSeum 2953

"You're CERTAIN to get \rrbracket " it at ARTHURS.

\star VALVES : We have probably the largest stock of valves in the Country.

Let us know rojur requiremmans.
AVOMETERS. NOW IN STOCK. AVOMETER, Model 7 19190 AVOMETER, Model 40 171010 VALVE TESTER (Complete)f16 100 TEST BRIDGEfll 00 AVOMINOR, Universal Model $\& 8$ 100 AVOMINOR, D.C. Model $\& 440$ SIGNAL GENERATORS, A.C........fi3 0

TAYLORS' METERS. COMNLETE RANGE

All orders sent by return of Post

STAGE EQUIPMENT
NOW IN STOCK. PROJECTOR LAMPS or cosh with order
London's Oldest Leading Radio Dealers.

EST
191%

Gray House, 150, Charing Cross Rd., London, W.C. 2

TEMple Bor 5833/4. ELECTRIGAL TELEVISION \& RADIO ENGINEER8.

H. P. Radio Services Ltd. offer-

Ex-Army Reception Sets, Type R107. 9 Valve receiver designed for CW and RT signals. Weight 96 lbs. Lengeh 24 ins. Height 13 ins. Depch 17 j ins. Frequency range $17.5-7 \mathrm{mcs} ., 7.25-2.9 \mathrm{mcs} ., 3.0-1.2 \mathrm{mcs}$ Highly Sensitive and Selective. A.C. mains $100-250$ volts or 12 volt accum. Mains Consumption 31 watts Circuit RF Amplifier. Oscillator. Frequency Changer. Two if stages (465 kcs) Second detector AVC. AF amplifier. Outpuc Stage and Heterodyne Oscillator (beac). Three types of valves used-EF39, EBC $33,6 \times 5$. 12 volt non sync, vibrator pack fitced. Monitor loudspeaker built in. Amazing value $£ 16160$ carr, paid All in first-class order and condition.
Terms: Cash onl/. (N, C.O.D. or Hire Purchase)
We are scill offering Ex-Govt. Combined Moving Coil Headphones and Moving Coil Hand Microphone. Guaranteed perfect 9.6, post. 8d.

We guarantee

satisfaction and safe delivery.
H. P. Radio Services Ltd. Britain's Leading Radio Mail Order House

55 County Rd., Walton, Liverpool, 4.
Tet.: Aintree 1445

METALLISED CERAMICS

Two additions to the S.P. range of FREQUENTITE bushes
R. $50650 \quad$ R. $50764 \quad \star$ R.50844 $\quad \star$ R.50855

TYPE	A mms.	B mms.	C mms.	Dms. mm	E mms.
$R .50650$	9.5	9.5	6.4	6.25	2.75
$R .50764$	9.5	16.7	6.4	6.25	2.75
$\star R .50844$	9.5	12.7	9.5	6.25	2.75
$\star R .50855$	12.7	22.2	12.7	9.5	3.9

\star Recent additions to the range

For full information and prices please write to:

Fault finding Simplified

The New Taylor CIRCUIT ANALYSER Model20A

Th.e $20 A$ traces the signal through the recoiver stage by stage frum accial to loudspeaker. A midget pentorie detector is contained in the prove, used for R.F., ascillator and I.F. checks, followed by an amplifier and londspeaker in the instrument with a" magic eye" to glve visual indication of signal strength. The latter is used for D.C. checking on A.V.C. lines or osclilator self-bias. For A.F. Cherking the input is taken directly to the amplifer which can be switched to fced either the loudspenker or the magic cye. The felector switch enables the interual speaker to be used separately for test purposes either as low or high impedance. A.C. mains operated, 110 volts and $200 / 250$ volts, $40 / 100$ c.p.s.

Taylor

PRICE $\mathbf{\text { E15-15-0 }}$

HIRE PURCHASE TERMS

£1.10.5 DEPOSIT \& 11 MONTHLY PAYMENTS OF £1.10.2

EARLY DELIVERY

TAYLOR PRODUCTS INCLUDE: MULTIRANGE A.C. D.C. TEST METERS SIGNAL GENERATORS VALVE TESTERS A.C. BRIOGES CIRCUIT ANALYSERS CATHODE RAY OSCILLOGRAPHS HIGH AND LOW RANGE OHMMETERS OUTPUT METERS INSULATION TESTERS MOVING COIL INSTRUMENTS
TAYLOR ELECTRICAL INSTRUMENTS LTD 419.424 MONTROSE AVENUE. SLOUGH, BUCKS, ENGLAND Telephone SLOUGH 21381 (4 lines) Groms \& Cobles "TAYLINS" SLOUGH

SPHERE INSTRUMENTS

Introducing the ALL WAVE TYPE ©! MAK 805 GENERATOR
A portable Siznal Generator for AC. Mains operation. Specially doveloped by SPHERE as a high class inacrument, for general Liboratory and Workahop use, it te the ideal instrument for the aligning and testing of radio recelvers and amplifiers.

This is a specially designed
Conorever ambodying soveral now and unique features and improvomentr, which radio en tincers will find invaluable.

Ai "SPHERE' Tert-lnseruments are encirely Britiah made with hiphete guality macerial and workmanship and carry a SIX Manthe guarantec.

Coneinuous Freguency owverge frem 110 Kilocyci so 54 Managden, in six bents.
 AT A OLANE" Band en Atermucior indlestorn.

- Buile in ladder attenuator, wich fine control, sivin: | Volt maximum, in five stops, is multiples of 10 Microvolts.
Radio and Audio Frequancy Velrages can be owitched via single Tesc-lead.
Veribis eoperol of 400 C.P.S. audlo, írem 0 to i Volt.

FOR RADIO SERVICE, RADIO ENGINEERING AND LABORATORY USE.
Wrime for UnNo. sas S.C.

ISOLATION ,nou VIBRATION

NEW VIBRATION ELIMINATORS

"EDUIFLEX MOUMIIMGS $-$

AN (AN PROOUCT
"Equiflex " Mountings are invaluable for the mounting and suspension of machines, equipment, instruments, electrical apparatus, motors, etc., and wherever elimination of vibration and shock is required.

SPECIAL FEATURES

Flexible In all directions at an equal deflection. Can be loaded on any side, thus eliminating vibration in Vertical, Horizontal and Longitudinal planes employing best quality natural rubber spring elements and complete with snubblng device. Special Fitilngs made to suit customers' requirements.
Also available os previously advertised, the ALL-METAL construction comprising an ingenious Damped Spring System. Write for Illustrated brochure, and send us detolls of your requirements.
A. WELLS \& CO. LTD. (Dept. W.W.), STIRLING ROAD, WhLTHAMSTOW, LONDON, E.I7

Advertisements
IJ

We'd like you to know NEGATIVE and POSITIVE FEEDBACK

on the FERRANTI 347

'Quality ' enthusiasts have long regarded the pentode or tetrode output valve with suspicion. Yet the pentode has two advantages which have made it universal in broadcast receivers - it gives high. output with economy in H.T. consumption and it requires quite a small input signal. It also has the useful quality of giving a relatively greater amplification of high notes than a triode, which helps to make up the loss due to the selectivity of the I.F. circuits.
The disadvantages of the pentode or tetrode are that the high power levels, which are apt tooccur in the lower audio frequencies of a programme, can cause unpleasant distortion; and that it does not damp the 'boom' which arises from the bass resonance of the loudspeaker.

The pentode can be made to behave like a triode by negative feedback; but amplification is lost, which reduces the sensitivity of the receiver and makes the use of a pick-up difficult. The useful ' boost ' of high frequencies is also lost. We have, therefore, introduced a system in which negative feedback is used to give the advantages of a triode in handling the low notes and cutting out boom. The loss of gain is made good by the use of positive feedback. The circuit is

so arranged as not to operate on the high notes, which do not require feedback, and so the increased high note amplification of the pentode is unimpaired.

This system combines the advantages of pentode economy and triode quality. It is used in the Ferranti 347 Console Receiver with a generously designed output transformer and a $10^{\prime \prime}$ high flux density P.M. loudspeaker.

Model 347 Console Receiver. 5-valve, 3-waveband A.C. superhet. Pre - set tuning on 2 switchselected stations. 10° energised permanent magnes speaker. Variable tone control. Figured walnus cabinet. Retail price £46.4.8. (Inc. £11.4.8 tax.)

machine tools

OF NUMEROUS TYPES

Government Surplus machine tools available NOW at attractive prices.
YOUR opportunity to get better equipment and increase production.
DISPOSAL CENTRES, where records of all machines available may be inspected, are open to the public for enquiries from 10 a.m. to 4 p.m. Monday to Friday inclusive :-

BIRMINGHAM C.M.L. Baildings, Great Charles Street BRISTOL 8/9 Elmdale Road, Bristol 8.
CARDIFF Imperial Buildingg, Mount Stuart Square. GLASGOW 21 Glawford Street.
LEEDS 10 Benk Street, off Boar Lano.
LONDON Room 0088, Ground Floor, Thames Hoase North, Milibank, S.W.1.
MANCHESTER Britannia House, Fountain Street.

The ARDENTE

IOUDSPEAKER

Exceptional frequency response and power handling capacity; 12" heavy duty, permanent magnet, movingcoil unit gives finest possible reproduction of specch and music. Specially designed walnut cabinet brings out sounds from the back of the loud-speaker cone in phase with the frontal waves.
Ideal for theatres, dance halls, ice rinks, etc.

- Details/demonstrations from:

ARDENTE ACOUSTIC
LABCRATORIES LTD. COMPTON, GUILDFORD, SURREY Guildford 3278
London Branch: 309, OXFORD ST., W.I. Mayfair 7917.

Makers of all eypes of speakers for indoor, outduor and mobile use

(Potent Applied For)
Every Radio, Electrical, Motor and Model Engineer hates those fiddling small screws in awkward corners! Here's the perfect solution-fits any screwdriver $3^{5} \mathrm{in}$. dia. approx., holds the screw snug and straight, slips up the shank when not required.

6d. EACH from Hardware Shops Everywhere.

THE ACRU ELECTRIC TOOL MFG. CO. LTD
123, HYDE ROAD, MANCHESTER, 12.
Tel.: ARDwick 4284

AN EVEN HEAT

THE NEW KOTECRTRTC HIGH SPEED PRECISION AUTOMATIC COIL WINDING MACHINE

 Type Alil

Write us for full information of this NEW DEVELOPMENT IN COIL WINDING.

A few features
Totally enclosed headstock.
Ease of operation and setting.
Winding of 2 coils simultaneously if required.
Infinitely variable micrometer wire gauge adjustment.
Wire gauges 25-50 S.W.G.

Winding Speeds up to 3,000 R.P.M.
Carriage setting handle.
Enclosed drive, with pedal control.

NOECTRIC ITD 20 , Avonmore Road, LONDON, W. 14 .

RAYTHEON CONTRIBUTIONS to development of Hearing Aids Little ualue outlasts big one...

and a group of the earliest Raytheon Hearing Ald valves.
Apart from the improvement in hearing qualities, just look at the difference in size! Though lass in halght and of much smaller cross section, the presant Raytheon Flat Valve provides five times the life. This is but one of many developments whleh have made Raytheon che.leading Hearing Aid Valve . . outnumbering all other makes combined by nine to one I

Ask for complote informazion. Address your inquiry to Submarine Signal Company (London) Led., Arcillery House, Artillery Row, London, S.W.I. England, or to:

South African Distributors :
Lynch.Wilde (Africa) (Pey.) Led.. Jo'burg.
RAYTHEON MANUFACTURING COMPANY
INTEPNAIIONAL DIVISION
60 EAST 42nd STREET NEW YORK 1Y, N Y., U.S.A

. . . is It Rotary or Pushbutton or Slider? Is It wanted for circuit selection, band selection, tap switching ? Is it for a new design or in quantities for a well proved circuit ?

Whatever it is - the answer is always OAK!
The basic design of all Oak switches is one of strength and efficient functioning, including such exclusive features as the double-contact clip and the floating rotor, ensuring self-alignment of each section.
 SWITCHES
BRITISH N.S.F. CO. LTD., Keighley, Yorkshire (Sole Licensees of OAK Manufacturing Co., Chicago) A.B. METAL PRODUCTS LTD., Feltham, Middx. (Sub-Licensees of N.S.F.)
The only Manufacturers of OAK Swleches under Patont Nos. 471391 \& 478392

nnouncing .. . SIX ENTIRELY NEW

ELECTRONIC INSTRUMENTS

by CINEMA - TELLEVISION LIMITED

INDUSTRIAL

 ELECTRONIC METAL DETECTORAn automatic inspection equipment for the detection of ferrous and non-ferrous metal particles of all kinds in non-metallic substances such as foodstuffs, plastics, textiles, tobacco, timber, pharmaceutical products, etc.

STANDARD ELECTRONIC COUNTER

A high speed electronic counter of particular appeal to the industrialist. Facilities are provided for batching, selective counting etc., the maximum counting-speed for the equipment being 30,000 per minute.

UNIVERSAL OSCILLOSCOPE
A unique instrument meeting fully the requirements of the serious users of oscilloseopes for laboratory and industrial purposes, arranged to permit readily the assembly of stitable units to fulfil every application. Complete range of units is available, e.g. stabilised time base, A.C. and D.C. amplifiers, 5 beam switch unit etc.

LABORATORY

 OSCILLOSCOPEA high grade 6^{*} screen oscilloscope expressly designed for laboratory use, incorporating hard valve linear time base, 3 megacycle " Y "' amplifier and 1 megacycle " X " amplifier. Cupboard and trolley are available if required.

DEMONSTRATION OSCILLOSCOPE

FOR LECTURE

 PURPOSESDemonstrator and student alike will acclaim the fearures of this equipment-15* tube with glare removing filter, 2 beam switch for simultaneous delineation of two recurrent wave forms, or their "addition"to produce a single resultant trace. Provision is madefor setting up from rear of instrument.
CINEMA-TELEVISION LTD., INCORPORATING BAIRD TELEVISION LIMITED WORSLEY BRIDGE RDO. LONDON, S.E. 26 Telephone: HITher Green 4600 Suppliers to ADMIRALTY, MINISTRY OF AIRCRAFT PRODUCTION, MINISTRY OF SUPPLY, ARMAMENT RESEARCH, etc. Manufacturers of Scientific Instruments and Photo-electric cells.

RII

Permeability Tuned I.F. Transformer
 TYPE I.F.T. 67.
 PRICE 8/9 EACH Supplied in Cartons

The I.F.T. 67 is a new development inasmuch as it is the same
 size as a standard electrolytic condenser, being $13^{\prime \prime}$ diameter \times $2 l^{\prime \prime}$ high. It is secured to the chassis with the same type clip. With a minimum Qof 90 in can, it isidealfor modern receivers. Send for full particulars.
r.m. Electric ltd., team valley, gateshead. 11.

VICTORIA RD., NORTH ACTON, LONDON, W. 3

A WIDE RANGE OF (3) 듬

 -created in our own laboratories and manufactured in our own works-supplies almost every requirement of Electrical Industry. Grades have been designed for operation under the most severe and varied conditions, and many are resistant to mould and fungus growth.Special cypis are evolved as new demands arise, and rechnical discussion on manufacturers' problems is welcomed.
Telephone Temple Bur 5927

ASTOR BOISSELIER \& LAWRENCE LTD.

Sales Dept.: Norfolk House, Norfolk Street, London, W.C. 2

Wh orted Loouspenkere ACCESSORIES

TRUQUAL

Volume Control
10 Watts, $9 / 6$ 20 .. 116 With Escutcheon Also COKE V.C. at 27/6, for use with SEPARATOR.

SPEAKER SWITCH

1. Set Speaker only.
2. Extension Speaker only.
3. Both Speakers.

With Escutcheon and Back Plate for fixing.

L.S. SEPARATOR

 Crossover 1,000 c.p.s., 3 - 15 ohms, 38 Watts, cleaner reproduction. Improved "rop."BRADFORD ROAD, IDLE, BRADFORD
Phone: IDLE 416 - Grams: Wharfdel, Idle, Bradford

TELCON r.f. CABLES

for all Television and Radio requirements CABLE CHARACTERISTICS

DIAMETER : -0.225 inches. TYPE :-
"TELCOTHENE " Dielectric Flexible. PVC Sheath Further details of this and other R.F. Cables on application

the telegraph construction \& maintenance co. ltd.

THE NEW FOTHFiMZL CRYSTAL PICK-UP MODEL

The introduction of the Model U/48 Crystal Pick-up brings high fidelity reproduction within the reach of all. Although priced to meet the most slender purse, the $U / 48$ possesses many of the refinements found in the more expensive models. Note the outstanding features of the U48, which will convince you that it is an instrument of remarkable value and of outstanding merit.

PRICE 25/-

\author{
Purchase Tax - - $9 / 4\}$

}

Extremely light weight. No record wear.
Fully screened streamlined tone arm.

New type of cortional crystal elemenc.
Cartridge specially treated co withstand extreme humidity.
Tone arm lifts to almost vertical position for easy needle changing.

- Negligible tracking error.

Finished in attractive brown

OTHER MODELS IN THE FAMOUS ROTHERMEL RANGE

DE LUXE MODEL

Price E4.4.0 Plus purchase Tax.
With Volume Control $\mathbf{E 4 . 9 . 0}$
With jewel Needle $£ 4.10 .0$
Wirh Volume Control and leweï Needle 44.19.0 Fius Purchase 7 ax.

SENIOR MODEL
Price 45:- Plus Purchase Tax. With Volume Control 50
With jewel Needle 51/.
With jowel Needie Control and lewell Needle 60;:- Plus Purchase Tax.

If fitted with a Rothermel Jewel Tipped Needle which gives over 2,000 playings, PRICE 31 -. Purchase Tax $11 / 71$.

Needle Replacement Service.

Oi and after the date of this announcement, any Rothermel Jewel Tipped Needle when fitted to Pick-up and which fails within 3 months of purchase will be replaced free of charge. cellulose.

+ Note: There is a saving in cost if your pick-up is ordered with lewel cipped needie fitted. 57 - Plus Purchase Tax.

MODEL S/8 and S:12
Price 42 - Plus Purchase Tax With Volume Control 47.
With lewel Needle 48.-
With tolume Conerol and lewel' Needle

The Rothermel Jewel Tipped Needle, over 2,000 playings, no record wear. Seraighe eype 9/- Plus Purchase Tax.
R. A. ROTHERMEL LTD., CANTERBURY ROAD, KILBURN, LONDON, N.W. 6 modid hime imo

- CONSTANT VOLTAGE POWER SUPPLY UNITS

THE UNIT ILLUSTRATED PROVIDES AN OUTPUT OF 200-275 VOLTS AT UP TO 250 mA ., WITH THE FOLLOWING PERFORMANCE SPECIFICATION :

STABILIZATION RATIO >100 OUTPUT IMPEDANCE < I OHM. OUTPUT RIPPLE $<2 \mathrm{mV}$. R.M.S.

MAY WE QUOTE FOR YOUR REQUIREMENTS ?
ALL-POWER TRANSFORMERS LID. 8a, GLADSTONE RD., WIMBLEDON, S.W. 19 Telephone : LiBerty 3303

THE GRAMPIAN 461 RECEIVER AMPLIFIER

This new high-grade reproducer has been specially designed for use in Small Factories, Hotels, Clubs, Swimming Pools, Municipal Buildings, etc., where it is desired to broadcase Radio or Gramophone Records and provide amplification of speech by use of a microphone. Let us send you further details. A dual wave-band superheterodyne with Power Amplifier having an output of 15 watts. Provision is made for both pick-up and microphone inputs with separate volume controls and high and low impedance outputs. it is of extremely robust construction in an attractively finished metal case.

Price List 54200 Plus $£ 220$ Purchase Tox A.C. Mains ONLY

HAVE YOU HAD DETAILS OF OUR NEW LINES? GRAMPIAN REPRODUCERS LTD. rampton Road. Hanworth, Middlesex.

UNITED INSULATOR CO, LTD,

OAKCROFT RD., TOLWORTH, SURBITON, SURREY

Telephone: Elmbridge 5241 Telegrams: Calanel, Surbitonnsurpassed
買n
eramics

Mephoss

IF SO hear the new loudspeakers in our Demonstration room.

WHARFEDALE "CORNER" CABINET

Triangular cabinet construction in solid mahogany of pleasing finish. (Available in solid oak-any shade to order.) Uses separate speakers for bass and treble, with new cross-over system at $1,000 \mathrm{c} / \mathrm{s}$. Very pleasing balance between bass and treble. All bass resonance above $50 \mathrm{c} / \mathrm{s}$ eliminated. Size of cabinet $25 \frac{1}{2}^{\prime \prime} \times 18 \frac{1}{\prime \prime}^{\prime \prime}$ deep x $44^{\prime \prime}$ high. PRICE £48.10.o.
ACOUSTICAL "LABYRINTH S.L.I5"
Solidly constructed cabinet of ingenious internal design giving equivalent of a five-foot, folded pipe, the antiresonances of pipe being cancelled by cabinet acoustic resonance. Wide-response bass down to $35 \mathrm{c} / \mathrm{s}$ with good middle and top definition. Size $21^{\prime \prime} \times 15^{\prime \prime}$ deep $\times 32^{\prime \prime}$ high. (Cabinet is in plain wood, WEBB'S can finish to your requirements.) PRICE £19.10.0.
SOUND SALES "PHASE INVERTER SPEAKER" Cabinet design gives 180° phase-inversion and general effects are better than results obtained with a 4 -foot baffle. Uses Sound-Sales Dual-Suspension Unit that remains centralized during a parallel excursion of $\frac{3^{\circ}}{8}$ in the magnetic field. Very good diffusion of sound. Cabinet size $14^{7} \mathrm{x}$ 14" $\times 29^{\prime \prime}$ high. PRICE £14.7.6.
Webb's are world known as Short-Wave Specialists-in addition we have for years joined in the quest for that elusive quality-really high-fidelity reproduction. The specialised speakers shown above are all good -we have our own ideas of relative merit but you may not agree-that last elusive "touch" is largely a matter of personal preference (or aural idiosyncrasy!).

hear them playing from:

WILKINS \& WRIGHT MOVING COIL PICK-UP Lexington Moving Coil Pick-up.
Connoisseur Moving Iron Pick-up.
Sound Sales Radio Feeder and Amplifier.
Webb's " Quality " Amplifier.
Acoustical "QA/12/P" Amplifier, etc.
. . . . We are also stockists for Broadcast Receiver; and Televisors by MURPHY, BUSH, COSSOR, etc.

Write, phone or caft

14 SOHO ST., OXFORD ST., LOMDOH, W. 1
Phone : GERrard 2089. Shop hours : 9 a.m.-5.15 p.m. Sats. 9 a.m.-1 p.m.

This small size condenser is of rigid construction, and is made in various capacities up to 540 mmf . with tropical finish. It can be supplied with trimmers built in if required. The 2 Gang Frame

WINNER!

COIL TURRET

 CT6.A unique superhet tuning unit complete "with large dial and drive mechanism.

Price complete
£4. 10. 0

5 Bands covering completely $0.15-30$ Mcs. (465 L.F.).

- Polystyrene insulation throughout-including coilformers.
- Permeability pre-set coils.
- All padding and trimming condensers included.
- Stableair spaced trimmers for adjusting circuit minimums.

Full particulars of this and other new components in our
latest catologue-from your stockist or direct-9d.
DENCO (CLAOTON) LTD., OLD ROAD, CLAGTON, ESSEX

ALL-BRITISH © VIBRATORS

the new"TDI"

This new reproducer represents an outstanding technical achievement great advances in performance. Both permanent eceivers, since there is no types are particularly suitable for televisiont magnet types the latest external magnetic field. In the permand owing to the design of the anisotropic magnet steels are employed of the total energy in the magnet whole magnetic structure, 25% more Our technical staff will be pleased is usefully employed in the gap. to supply

Special Dffers by "Hadioneart"

10 Watt Vitreous 250 RESISTORS
100 Watt Vitreouch.
25 Watt Vitreous. 20,000 ohms, 50,000 ohms., $5 / 6$ each
75 Watt Vitreand 1,500 ohms., $3 / 6$ 7,000 ohmms., $2 / 6$ each.

$$
\text { ate Resistors, 4d. : I wate. 6d. } 0 \text {. ohms, 4/6. }
$$

4 mfd ., $2,000 \mathrm{H}$ VOLTAGE OIL-FII 2 watt, $1 /-13$ watt, $1 / 6$ each. 750 v . wks., $5 /-\mathrm{wkg}$., $15 /-$: $1,500 \mathrm{v}$. wkg., $12 / 6$ NDENSERS
$2 \mathrm{mfd} .1,000 \mathrm{v}$. wkg., $5 /-$; 8 mfd .500 v, wkg., $12 / 6$; 1,000 v. wkg., $10 /-$;
TRANSMITTING BY-PASS 10 v. wkg., $7 / 6$: 10 mfd .600 v. wkg., $10 /-$ 1 mid. $1,000 \mathrm{v}$ Sprazue screened COUPLING CONDEN., 10 /cases. Tropical Tubular paper, $1 /$. $01,1,1 /$ each . 1 . 3/a. Tropical. Clip Terminal $1 / .03 \mathrm{mid}$ each.
Ol ditzo but 4,000 Threaded-at end for Tubular in plastic 1/6. $.001 \mathrm{mfd} .5,000 \mathrm{v}$. Test. High volcage Mica, $/ 6$. (no threaded terminal), RECEIVER AND

COW POWER
.5 mfd .600 V . Tubular paper CONDENSERS TRANSMITTING 450 V . Tubular paper, paper. $1 / 6: .5 \mathrm{mfd}$ M
25 mid. 500 V. Tubular Auminiumid. 350 Vansbridge type, $1 / .: .5 \mathrm{mf}$. Tubular minium. 1/-: 300 . Tubular paper, 1 mfd .500 V Miminium, $1 / \mathrm{m}$ 500 V. diteo, 1002 mfd .500 V . Mic. C : $.02 \mathrm{mfd} .750^{\circ} \mathrm{V}$ B Block type Verious viles .00015 mfd 500 Ceramic Casing $1 /$. Tubular Alu25 mfd . 50 Vos of Mica Condensers V. Silver Ceramic $2 / 6$: .000255 mfd . metal cased, $2 / 6$.
2 pole 6 way single wher (ident SWITCHES
way double waler, $3 / 6$. 2 pal for meter
3 wafer, S/pole 4 way 2 wafors (criple wafiple wafor, $3 / 6: 2$ tole 3 ; pole 3 conneckions to common rotar (criple wafer), $3 / 6 ; 2$ pafor, $3 / 6$: 2 pole 4 pole and 3 seas stator contacts, $2 /$ way and off Aand Swicching." 2 pole 4 way double wafer. PADIOMAET =. THE ABOVE ARE A SELECTION. FROM OUR LIST NO. 6 SEND S.A.E. FOR A COPY.
B, HOLLOWAY HEAD, BIRMINGE, FOR A COPY.

EXCELLENT
High Fidelity S.H.E.F SELLING LINE

Retail Price, including Transformer Plus 10/4J. Pur hisk planstic finish

 Will operace Transformer average rectup with high level Purchore Tax
duction flar. No Hum Problem No Pre-amplifitut.
allow for drop in $12, \cos$ c.p.s. with Genuine High. Fide Shielded Needles of approxecording level of bass boost below Fidelity repro. diameter should bexmately 0.3 to of 6 db. per octave. 250 c.p.s. to Availabie should be usedy 0.3 to 0.4 inches octave.
beautiful plastic fine trade and export
This is one of many.
merseas enguiries other electrical appliances
may be made.

80. VCTORA ST, ©ONOON, SWM LTD.

INTRICATE PARTS

BULLERS LTD., 6, Laurence Pountney Hill, London, E.C. 4 Phone: Manalon House 9971 (3 lines) Telegrams: "-Bullers, Cannon, London"

Instrument Individuality

The new Universal Bridge exemplifies the principle that individuality in instrument design is without virtue in itself; each innovation must directly contribute to functional efficiency and the evolution of a completely satisfactory measuring unit.
For general purpose use, the Universal Bridge Type TF 868, contains the necessary elements for the measurement of inductance and capacitance at $1000 \mathrm{c} / \mathrm{s}(1 \mu \mathrm{H}-100 \mathrm{H}$ and $1 \mu \mu \mathrm{~F}-100 \mu \mathrm{~F})$, and for d.c. resistance measurements $(0.1 \Omega$ to $10 \mathrm{M} \Omega)$. Elaborations which would add appreciably to complexity or cost have been intentionally excluded.
By an ingenious mechanical arrangement, a single dial, in combination with a range selector, provides direct reading of $L, C \& R$, without risk of confusion and without recourse to multiplying factors. Full specification and description available on request.

MARCONI INSTRUMENTS LTD

ST. ALBANS, HERTS. Telephone: St. Albans 6161/5. Northern Office: 30 ALBion street, hull. Tel.: Hull 16144. Southern Office: 109 EATON SQUARE, S.W.I. Tel.: Sloane 86i5. Western Office: 10 PORTVIEW ROAD, AVONMOUTH. Tel.: Avonmouth 438.

Culdon

Type No. 184

Type No. 185

SYDNEY S. RIRD ESons. <td. CAMBRIDGE ARTERIAL ROAD. ENFIELD. MIDOX. Phone Enfield $2071-2$ 'Grams: Capacity, Enfield.

6uh to 6 MH available as individual coils or built into 3 band or 6 band coil packs with RF stage. Deliveries rapidly improving. Enquiries invited.

TESTED
I. C. ATKILS Latoratories, 32, Cumbarland Road, Kew, Surrey.

The Connoisseur

A HIGH FIDELITY MINIATURE MOVING IRON PICK-UP

Faithful reproduction of all recordings from 12,000 c.p.s. to 30 c.p.s, will win many new friends for the CONNOISSEUR miniature moving iron Pick-up in 1948.
The CONNOISSEUR reveals a wide range of notes and instruments that has hitherto been hidden by bass and treble resonance. The CONNOISSEUR will reproduce every sound on the record. Try it and prove it.
Note new prices. Pick-up 54'-plus $17^{\prime} 7$ P. tax Transformer 13'- nett.

Apply to
Albion Electric Stores, 125, Albion Street, Leeds 1 or to
Lawton Bros. (Sales) Ltd., Henry Square, Ashton-under-Lyne
Made by
A. R. SUGDEN \& Co. (Engineers) Ltd., Brighouse, Yorks

FRLOWWESTEVEER

attenuation and capacitance
18: axis insulated atticulated CO-AX R.ECABLES

- HCि POWYA LLEXIBLE RE. CABLE:

1. 20.0 mm 40 KW ut 10 Me/s. Dlamiter ot mendfut rodrus:
2) ymx wow capacirance cabuse:

Pondicincers per foot from 63 mm for

TRANSRADIO LTID 138 CROMNELL ROAD IONDON SW?

The leading radiograms are fitted with Goodmans 12* loudspeakers.
Type No. T2;1205/15

coodmans

 .A TRADIT oudspeakersGOODMANS INDUSTRIES LTD lancelot road, wembley, middx

FOR more than 30 years, radio and electrical designers and engineers in all parts of the world - have found their most exacting requirements met by the unrivalled Dubilier ranges of capacitors and resistors, renowned for their constancy and complete reliability under the most arduous operating conditions. These capacitors and resistors, so important in Radio, Radar and Television equipment, are being continuously developed and extended in order to provide for every conceivable application. Dubilier capacitors and resistors owe their unvarying quality, technical excellence and high degree of stability to the close control which is maintained thoughout all stages of their manufacture.

Full technical data and prices supplied upon request.

DUBITTED

DUBILIER CONDENSER CO. (1925) LTD.. DUCON WORKS, VICTORIA ROAD, NORTH ACTON, W. 3 Telephone: Acorn 2241 (5 lines)

Telegrams: Hivoltcon, Phone, London Telephone: Acorn 2 Li

Marconl International Code

Wireless World
 RADIO AND ELECTRONICS

| 37 | H |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

FEBRUARY
1948

Proprietors:
ILIFFE \& SONS LTD Managing Editor Editor: HUGH S. POCOCK, w.r.e.z. H. F. SMITH

Editorial, Advertising and Publishing Offices DORSET HOUSE, STAMFORD STREET, LONDON, S.E.I.

Telegrams:
Ethaworld, Sedist
London."

PUBLISHED MONTHLY Price: 1/6
(Publication date 26th of preceding month) Subscription Rate: 20/- per annum. Home and Abroad

Branch Offices:
Birminghom : King Edward House, New Sereet. 2. Coventry : $\quad 8-10$, Corporation Street. Glasgow: 26B, Renfiedd Sireet, C. 2. Manchester 260, Deansgate, 3.

In this Issue

EDITORIAL COMMENT 39
ELECTRONICS AND ATOMIC ENERGY By E. W. Titterton 40
IONOSPHERE REVIEW : 1947 By T. W. Bennington 44
TEST REPORT : RADIOMOBILE MODEL 100 48
CLEANING SWITCH CONTACTS By J. J. Payne 51
SHORT-WAVE CONDITIONS 52
WORLD OF WIRELESS 53
SLOT AERIALS By D. A. Bell 57
COIL-PACK MODIFICATION By L. Miller 56
C.P.S. EMITRON 60
PUSH-PULL INPUT CIRCUITS By W. T. Cocking 62
COMMERCIAL DISC RECORDING 67
" j " By "Cathode Ray" 68
UNBIASED By "Free Grid" 72
LETTERS TO THE EDITOR 73
RANDOM RADIATIONS By "Diallist".. 76
RECENT INVENTIONS 78

2 LORD NORTH ST., LONDON, S.W. TELEPHONE ABBEY 2126 FACTORY SOUTH SHIELDS, CO, DURHAM

VALVES AND THEIR APPLICATIONS

 By M. G. SCROGGIE, B.Sc., M.I.E.E. No. 14: Mullard HIGH-SLOPE R.F. PENTODE EF42 (continued)$\mathbf{L}^{\mathbf{L}}$AST month's notes were devoted to constructional features of the EF42; here follow some of the electrical data. As a basis for comparison, the EF50, having been used so widely during the last nine years, is probably the best known; while the EF54 is a more recent type in the same class. Typical operating conditions (250 V on anode and screen and 10 mA anode current at about -2 V grid bias) are similar for all three valves.

The slope of the EF42, $9.5 \mathrm{~mA} / \mathrm{V}$, is about 50% up on the EF50 and 25% better than the EF54, for practically equal heater rating. Input and o.1tput capacitances (9.5 and 4.5 pF respectively) aie together about the same as in the EF50; C_{in} aione is not quite so good as the EF54's 6.2 pF , but $\mathrm{C}_{\mathrm{a}-\mathrm{gl}}$ is better $-<0.005$ compared with 0.02 pF . Maximum anode dissipation is slightly less - 2.5 W instead of 3 W in EF50 and EF54. Equivalent noise resistance of the EF42 (750) is about the same as in the EF54 and twice as good as in the EF50. Input resistance at $50 \mathrm{Mc} / \mathrm{s}(5000 \Omega)$ is slightly better than the EF50 but only half as good as the EF54.

The upshot of all this is that if the criterion is maximum operating frequency, where $g_{m} \times$ input resistance is the limiting factor, the EF42 must give way to the EF54, useful up to $250 \mathrm{Mc} / \mathrm{s}$. But notwithstanding its miniaturity, at television and f.m. frequencies the EF42 is appreciably better than the EF54 and substantially better than the EF50; enough perhaps to save a whole stage (and, of course, considerable space) in a television r.f. or i.f. amplifier. It is particularly applicable to radar i.f. amplifiers, because they tosually work at about $45 \mathrm{Mc} / \mathrm{s}$ and require an vign wider bandwidth.

Though the type specifically for the v.f. stage is the EF55, especially if there is any doubt about sufficiency of output from a smaller valve, in most situations the design can be made to allow the economy of using the EF42 there also.

A demand that is likely to increase is for a valve suitable for r.f. amplification in v.h.f. receivers, especially f.m. The EF42 is eminently suitable for this purpose up to at least $150 \mathrm{Mc} / \mathrm{s}$.

Then again, the EF50 has been used in a great variety of special circuits - cathode followers, time base generators, etc. - where its high slope is helpful; and here the EF42 does even better. Its output resistance as a cathode follower is not much more than 100Ω; and the fact that all the electrodes - even the outer screen - are brought out separately allows the maximum adaptability.

So altogether the EF42 looks like being an exceptionally versatile and effective valve, a decided improvement on the EF50, and preferable in some respects even to the EF54.

Mullard

4
This. is the fourteenth of a series written by M. G. Scroggie, B.Sc., M.I.E.E., the well-known Consulting Radio Engineer. Reprints for schools and technical colleges may be obtained free of charge from the address below. Technical Data Sheets on the EF42 and other valves are also available.

THE MULLARD WIRELESS SERVICE CO. LTD., TECHNICAL PUBLICATIONS DEPARTMENT, CENTURY HOUSE, SHAFTESBURY AVE., W.C. 2

Wireless World

RADIO AND ELECTRONICS

Vol. LIV. No. 2

Shont-arave Hroallcasting Unaler Fire

ALETTER from a correspondent, printed on another page, draws attention to a vitally important aspect of the use of communication channels. For some years there has been a growing body of opinion, particularly in America, that short-wave international broadcasting has failed; that it is a gross misuse of valuable communication channels to monopolize them for a service which benefits a negligible proportion of the world's listeners. We believe that it was intended strongly to oppose the allocation of channels for such purposes at the Atlantic City Conference, but apparently other views prevailed, and the H.F. broadcasting bands have actually been widened rather than curtailed.
As an alternative to long-distance H.F. broadcasting for direct reception by the listener, it has been suggested that much better results could be obtained, with greater cconomy of channels, by distribution over line or radio international communication networks, with subsequent rebroadcasting by the national stations of the country of destination. In addition to the saving of channels it is urged that the use of diversity reception and other methods open to big organizations will ensure a better signal than the "direct" listener can ever hope to achieve.
Since our correspondent's letter was written, strong support for his contentions has come from a leading article in the American journal QST. Referring to the Atlantic City Conference, the article says " It is difficult to portray adequately the greed, rapacity and general radio-dumbness of the average foreign spokesman for government broadcasting. With exceptions, of course, he is commonly a rather high-powered political character, not a real radio man and not a technical man, caring less than nothing for the communication services and rioting in the plenipotentiary powers given him by his government. Radio means only broadcasting to him and he doesn't care what happens to other services as long as he gets what he wants."
Turning to the large number of channels required for international short-wave broadcasting, QST goes on to say " It has been reliably calculated by engineers, that it would take about half of the H.F. spectrum to set up, on sound technical
principles, an idealized system meeting every nation's ambition of being able to propagandize every other nation."

Obviously, some of those who oppose shortwave broadcasting are actuated by motives of selfinterest. Some of the arguments against it carry force ; others, such as those based on the present short-comings of the service due to chaotic ether conditions and inadequate receivers, do not. These are defects that can be overcome; they are not fundamental to the issue.

Admission of Defeat

To recommend the total or even partial abolition of S.W. broadcasting would, in our view, be a counsel of despair, and an admission of defeat ; an admission that mankind lacks the wit to turn to proper uses a medium of such self-evident potentialities for good. Many years ago, Wireless World, campaigning against apathy and even active opposition, urged the setting up of an Empire broadcasting service, and many of the arguments then adduced in support still hold good. But it cannot be denied that S.W. broadcasting has been misused, and also that conditions have changed. Many of the factors involved-social, political and cultural-cannot properly be discussed in a technical journal. Undeniably, such services, like all forms of H.F. long-distance communication, make heavy demands on channels, as it is necessary to cater for diurnal and seasonal variations in propagation conditions. In the case of broadcasting the demands on channels become almost unbearably heavy when the nations seek to use a multiplicity of languages other than their own.

The sole concern of this journal is that radio communication channels should be used to the greatest advantage. We are by no means convinced that H.F. long-range broadcasting represents what is inherently a misuse of valuable channels. But it is perhaps overdone ; some of it is ineffective and some is put to base uses. Those sho are laying claim to channels and those responsible for the conduct of services must regard themselves as being under an obligation to justify themselves, and see that they have a good case to present.

BEFORE we can proceed to discuss the part played by electronic techniques in the field of atomic energy* it is necessary to trace the development of the subject from its early beginnings. To examine so wide a field within the confines of a single, short article will necessitate an abbreviated, and in some details, a not completely rigorous treatment.

It has been known since the closing years of the last century that certain heavy elements like uranium and radium are radioactive. Their atoms disintegrate (or split) of their own accord with the emission of ionizing radiations. Energy is liberated during the process as is evidenced by the fact that a lump of radium stays warm and radiates heat continuously. The process is uncontrolled," no efforts of man can increase or decrease the rate at which the energy is liberated, and the elements providing atomic energy in this form are too scarce in nature for them to be useful sources of power.
The ionizing radiations emitted from radioactive substances are of three types. a-particles, which are the central positively-charged cores (or nuclei) of helium atoms, β-particles which are now known to be electrons similar to those emitted from a hot cathode, and γ-rays which are high-frequency electromagnetic waves similar to X-rays but with greater penetrating power.

Fig. 1. Schematic diagram of ionization chamber and D.C. amplifier.

[^0]
Hecteonics Techniques Used in Research and Production

Such radiations may be detected and their properties examined by means of an ionization chamber depicted in Fig. r.

In this case the chamber is a parallel-plate air capacitor C across which a potential E is maintained. a-particles, β-particles or γ-rays passing through the air between the plates produce $(+)$ and (-) ions which migrate under the influence of the electric field and produce a current in the circuit.

Measurement of the change in potential caused by this current flowing through R gives an indication of the strength of the radioactive source. In Fig. I the poten-

Fig. 2. Greinacher voltage doubler circuit.
tial change across R causes the bias of V and therefore the current through it to change. This is indicated by the meter M. This technique of D.C. amplification forms the basis of a large number of instruments now in use.

The controlled release of atomic energy came as a result of experiments by Lord Rutherford in which, by bombarding the nitrogen atoms in air with the bulletlike a-particles emitted from a mixture of radioactive materials, nitrogen was transformed into a form of oxygen with the emission
of a nuclear particle called the proton (which is the nucleus of a hydrogen atom). Rutherford's experiments opened up the whole field of nuclear physics.

Application of electronics in this

Fig. 3. Cockcroft-Walton voltage doubler circuit.
field came about in two ways. First, it was desired to replace the radioactive source of bombarding particles by a man-controlled source. This led to the development of high voltages for the acceleration of the charged particles to sufficiently high velocities, and therefore energy, to split atoms.

Fig. 2 shows one of the early circuits-the Greinacher voltage doubler. The circuit is well-known to users of metal rectifiers and it will be seen to be two half-wave rectifier circuits connected back-to-back, so that the outputs are in series.

It was little used for particle acceleration because it is only possible to double the voltage obtained from the transformer
secondary. secondary.

Atomic Energy

By E. W. TITTERTON, Ph.D. (Atomic Energy Research Establishment. Harwell)

Instead a new circuit was developed by Cockcroft and Walton and is shown in Fig. 3. If E_{0} is the peak voltage from the transformer secondary the capacitor C_{1} charges to E_{0} through V_{1} dur-

Fig. 4. Voltage quadrupling circuit.

ing the negative half cycle. On the positive half cycle the voltage E_{0} across C_{1} is in series with that across the transformer secondary and therefore C_{2} charges through V_{2} to a potential $2 \mathrm{E}_{0}$. The voltage waveform at \mathbf{A} is sinusoidal, oscillating between earth potential and $2 E_{0}$.

The circuit has the advantage that further diodes and capacitors may be put in cascade to obtain voltages greater than $2 \mathrm{E}_{0}$. Thus Fig. 4 shows the circuit modified to provide an output voltage of $4 \mathrm{E}_{0}$.

With such equipment as this Cockcroft and Walton, in 1932, accelerated protons by allowing them to fall through a potential difference of 600 kV and produced nuclear reactions by allowing the particles to bombard targets made
of certain elements. This was the first wholly man-controlled atomsplitting.

Although nuclear energy may be released in such reactions the process is very inefficient, since the energy consumed in accelerating the particles is far greater than that which may be released.

The rectifier-transformer type of accelerator has been largely replaced by other forms of equipment, notably the electrostatic generator devised by Van de Graaff and the cyclotron, developed by Lawrence.

Fig. 5 shows the essentials of an electrostatic generator. A series of corona points, A, usually gramophone needles, are held at a potential of so to 50 kV and spray

Fig. 5. Simplified diagram of electrostatic high-voltage generato:-
positive charge on an insulating, endless belt. The belt, passiing over two pulleys, carries the charge up and takes it inside the hollow aluminium spinning which constitutes the high-voltage electrode. Further corona points, B, remove the charge from the belt and transfer it to the high-voltage electrode somewhat like a lightning conductor discharges a thunder cloud. The H.T. head therefore acquires charge and rises in voltage. Equilibrium conditions are attained when the current con-
veyed to the H.T. head by the belt is exactly equal to that drawn by the ion source and leakage along the insulators (not shown).
Generators such as this operate at voltages between 2 and 5 mil lion and are usually enclosed inside a steel pressure tank. Gas, such as nitrogen, at a pressure of ro to 20 atmospheres, can then be used as a high-voltage insulating medium.

Higher energies still may be achieved by the use of a cyclotron, a schematic diagram of which is given in Fig. 6. D_{1} and D_{2} are hat, semi-circular boxes open along their straight sides and called "dees" because of their shape. They are like the two halves of a very short cylinder cut along a diameter. They form part of the capacitance of an R.F. oscillator (about ro Mc/s) and are mounted on insulating supports within an evacuated circular box. This box lies between the poles of an electromagnet so that the magnetic field is perpendicular to the plane of the dees (i.e., the paper in Fig. 6).

Suppose that the ion source, located centrally between the dees, is producing protons. Then at the instant when D_{1} is negative with respect to D_{2} (the peak voltage between D_{1} and D_{2} is between 20 and 50 kV) protons are accelerated forwards and into D_{1}. Since the dees are metal there is no electric field inside them and, once inside, the proton moves in a circular path under the influence of the magnetic field. If the frequency

Fig. 6. Schematic diagram of cyclotron showing spiral ion path. In practice the ion path has many more turns than are shown here.
is chosen correctly the proton completes a semi-circle and returns to the accelerating gap between D_{1} and D_{2} when the field is reversed, i.e., D_{2} negative with respect to D_{1}. The proton is then accelerated again and proceeds to

Mlectronics and Atomic Energydescribe a semi-circle of larger radius inside D_{2} returning again for further acceleration in the correct phase. As indicated in Fig. 6 the path is made up of a series of semi-circles of increasing radius until eventually the protons come under the influence of the electric field of the negatively charged deflector plate which pulls them out of the magnetic field and causes them to strike a target.

Cyclotrons giving particles with energies corresponding to ro million volts are commonplace, and the largest, at Berkeley, California, which has pole-faces 184 in in diameter, has produced protons with energy corresponding to an acceleration of 100 million volts.

Professor Oliphant, at Birming. ham University, has a special form of accelerator under construction called a proton synchrotron which, it is hoped, will give protons energies corresponding to an acceleration through 1,000 million volts.

The second point at which electronic techniques entered the field was in the detection of the single particles of matter emitted in a nuclear reaction; for examp!e, the protons emitted in Rutherford's original experiment mentioned earlier. A single, energetic, charged particle such as a proton

or a-particle entering an ionization chamber (Fig. I) causes a burst of ionization. If the ions are collected quickly the charge Q collected causes a voltage pulse of amplitande Q / C to be developed nerross the plates of the chamber Whose capacity C may be between go-soo $\mu \mu$. The magnitude of the chayge is such that a single atich-ar particle gives rise to a tins order of 10 volt. condejed linear amplifier
with a gain of a million will amplify the pulse to 100 volts at which level it can be presented on a cathode-ray oscillograph screen.

The output of the amplifier may contain pulses of a variety of sizes, and it is often necessary to reject pulses less than a chosen size. This can be achieved by employing a voltage-discriminator, an example of which is given in Fig. 7. The anode of V is nor-
and, because it has no electrical charge, it does not ionize gases and can travel through great thicknesses of material.

The second discovery was made by two Germans, Hahn and Strassman, and was that a neutron impinging on the heavy uranium atom can be captured and cause the atom to break up

mally at earth potential while its cathode is held at some positive potential E through the resistance R_{2} which connects to the potentiometer chain R_{3}, R_{4}.

The circuit gives no output pulse except when the amplitude of the input pulse applied across R_{1} excee is E volts. ine diote V. then conducts and a positive output pulse is developed across R_{2}.

The rate at which the pulses leave the discriminator can be derermined by an integrating counting rate circuit or by an electronic counting circuit, which adds up the pulses it receives and presents the answer as a total on a telephone message register. Originally, counting circuits employed thyratrons in a circuit which would produce only one output pulse for every two input pulses; that is the circuit divided by two. The use of thyratrons imposed a limitation on speed because of the de-ionization time, and to-day hard-valve circuits are preferred. With hard valves, circuits can be designed which will accept pulses at rates up to one or two million per second. The block diagram of the complete equipment for detecting and counting individual nuclear particles is shown in Fig. 8 , and is representative of thousands of such pieces of equipment in daily use in laboratories throughout the world.

Two fundamental discoveries led to the large-scale release of atomic energy.

The first, made by an Englishman, Sir James Chadwick, was the discovery of the neutron. The neutron is one of the ultimate units from which atoms are built
into two nearly equal partssmaller atoms-with the release of a large amount of energy and between one and three further neutrons. This process is called nuclear fission. If, for simplicity, we assume that two neutrons are emitted for fission, then if each of these two neutrons is captured by other uranium atoms further fissions can occur and four neutrons result. It will be seen, as depicted pictorially in Fig. 9, that the neutrons multiply in the system and energy is liberated. This process is called a chain reaction.

These ideas were known before the war and the wartime development was concerned with putting them into practice. The first attempts were made employing slow (low velocity) neutrons and the growth of neutrons in the reaction was arranged to proceed slowly enough to enable control to be effected. Such control is achieved by absorbing the neutrons with some material like cadmium which does not undergo fission and generate further neutrons. The machine which results is called a pile because it is a pattern of uranium rods embedded in a pile of graphite blocks. The graphite is used to slow down the neutrons. The number of neutrons present in the system is constant when the number formed by fission per second is equal to the number lost per second by leakage from the machine and by absorption in the cadmium control rods. By moving the control rods in or out of the pile we can decrease or increase the rate of fission and hence the rate of energy produc-
tion.

The first pile was completed and went into operation in Chicago, U.S.A., late in 1942. The first pile in England was completed in August, 1947, and can be operated at a power level of soo kW .

The more spectacular development, the extremely rapid release of atomic energy in a bomb, was achieved in July, 1945, in the U.S.A., employing fast neutrons so that the reaction built up extremely rapidly and was completed in a time of the order of a millionth of a second.

To provide energy on a scale large enough for industrial use it will be necessary to build large piles operating at high temperatures and developing many megawatts of output power. Such developments are in progress in the U.S.A., in England, and in France.

To determine the power level at which a pile is operating it is necessary to measure the number of neutrons present. Since neutrons are uncharged and do not ionize; special methods of detection are necessary:

A special boron-coated ionization chamber can be employed. Boron, on capturing a neutron, disintegrates with the emission of an a-particle which ionizes and can can be detected electronically as described earlier. The number of α-particles therefore gives an indication of the number of neutrons crossing the ionization chamber and hence the power level at which the pile is working. If the number of neutrons increases, the number of counts increases and this information can be fed through an electromechanical system (e.g.. a selsyn) to lower the control rods into the pile to reduce the reactivity of the system, thereby maintaining the power level constant. The process is analogous to the performance of an electronically regulated power supply.

Electronically operated safety circuits are usually employed to drop special safety control rods into the pile and shut the plant down in the event of failure of the cooling system; instrument breakdown, or the power rising too fast.

The materials used in pile con-struction-uranium and plutonium
-are poisonous and workers fabricating the materials have to be protected. Because both materials emit a-particles it is possible for very minute quantities of material on the hands to be detected by the single particle technique. Automatic equipment for monitoring hands is employed tc indicate when the hands are contaminated and need cleasing.

Near an operating pile there is strong neutron and γ-radiation and the strength of these radiations is measured remotely. usually by D.C. amplifier techniques as described earlier.

Within the pile, in addition to a higher intensity of neutrons and -rays, the fission products themselves are radioactive. Moreover, slow neutrons are captured and produce artificial radioactivity in

Fig. 9. Diagrammatic re-resentation of a chain reaction illustrating the growth of the neutren n population by the fssion of uranium atoms (U) on the assumption that two neutrons are emitted at each fission.
many elements. A pile thus produces large quantities of radioactive materials the radiations from which can be harmful to health. Some of these materials are wanted for medical purposes, such as the treatment of cancer, but the majority have to be disposed of safely from time to time.

The circulating gas, water or other medium used to cool the pile becomes radioactive and it is of importance to ensure that it will cause no harm to human beings, animal or plant life if it is to be discharged into the atmosphere in the case of a gas, or a river or the sea in the case of a liquid.

It will be seen from these remarks that the development of instruments which will detect radioactive materials, through the a, β or γ-radiations which they may emit, is of paramount importance. We have already discussed a-particle detection. Fortunately β-particle and γ-ray detection can be done very easily by means of a device known as a Geiger-Muller counter. In one form this device, which can be regarded as a sensitive form of
ionization chamber, consists of a wire passing axially down a metallized glass tube as shown in Fig. 10. A very high electric field is maintained between the wire and the cylindrical wall. The cylinder is filled with a gas-vapour mixture at a pressure of a few centimetres of mercury. Entry of a β-particle or absorption of a γ-ray within the counter can precipitate a discharge in the gas (somewhat like a thyratron breakdown) which causes current to flow through the high resistance R. The change of potential across R is of the order of I volt and can be amplified and used to drive a counting rate meter or counting circuit. The counters used are usually selfquenching and the discharge extinguishes itself after a de-ionization period of about $100 \mu \mathrm{sec}$.

Large numbers of instruments of this type need to be located about the plant, in laboratories, etc., to protect the bealth of the workers.

A last sombre thought is that, until we can be certain that there will never be another war, we must always consider the possibility that atomic bombs might be used against us. If that ever happened it would be vital that our Armed Forces and Civil Defence Services be equipped with electronic instruments for detecting radioactive contamination.

Sufficient has been said in this brief review of the subject to indicate that we are at the beginning of an era of technical development

Fig. 10. Schematic representation of a Geiger-Muller counter circuit.
in the field of atomic energy. As we go forward towards industrial applications more and more instrumentation will be required.

The ingenuity of the physicists and electronics engineers has been, and will be, called into play to design the necessary electronic instruments, and increasing numbers of skilled technicians will be required to operate and maintain them.

Ionosphere Review: 1947

FOLLOWING the usual practice of Wircless World at the end of each year it is intended here to review the course of the present sunspot cycle, with particular reference to the changes which occurred during 1947, and to examine the effects of these upon short-wave propagation during the year. And after that we may attempt to see how conditions may vary during 1948 and after, though, because of the present impossibility of accurately predicting the changes in solar activity a long way ahead, this attempt must necessarily be some-

Fig. I. Annual means of sunspot of relative numbers.
thing in the nature of a conjecture.

1947 was an extremely interesting year so far as radio-wave propagation is concerned-a year during which much information was acquired which will be of value to several branches of physical science, as well as to the radio engineer. Sunspot maximum apparently ocurred during the year, and was a maximum of very exceptional magnitude. Consequent on this high sunspot activity the regular ionosphere layers became capable of propagating higher radio frequencies than they ever have since radio first began-thus providing for the first time practical information as to their behaviour under such peak conditions of solar activity.

First, for those new to the subject, a few brief words about the

Short-wave Propagation Survey, with Forecast for 1948

nature of the data to be examined. The ionization of the upper atmosphere, which is responsible for the propagation of short radio waves, is brought about, in the main, by the action of the sun's ultra violet radiations, and, since the sun's activity and hence the strength of its radiations varies over a long period which is the sunspot cycle, the state of the ionosphere and hence the conditions for shortwave propagation also varies over the same period. Among other evidence of the variations in the sun's activity are the sunspots which appear upon it, and these are regularly examined at the various astronomical observatories, and the information they obtain is published in the form of "sunspot relative numbers." The observations made at the different observatories are correlated by that at Zurich, and the final "number" published from there. Continuous records of this index of the solar activity go back to 1749-less comprehensive data exist since 28 B.C.-though the final "numbers" for 1947 are not yet available. For this year we have, therefore, used those obtained by the Royal Observatory at Greenwich alone, and these are provisional only.

Measurements of the atmospheric ionization are regularly made at ionosphere observatories in many parts of the world, though, of course, the records of these only go back for a few years. Nevertheless, as will be seen, the correlation between the two sets of phenomena, solar and ionospheric, has been well established. The ionospheric data is usually published in the form of hourly values of the critical frequency of the various layers, and we have mainly used that obtained by the station of the D.S.I.R. at Slough. The critical frequency, it will be remembered, is the highest frequency returned from a given

By
 T. W. BENNINGTON

(Engineering Division, B.B.C.)

layer when the exploring wave is sent vertically upwards. For communication over a distance the corresponding value is the Maximum Usable Frequency, which is dependent on the critical frequency and the angle of incidence made on the layer in order for the wave to cover the particular distance. As a rough guide we could assume that, at present, the M.U.F. for the maximum distance it is possible to cover in one hop would be about 3.3 times the critical frequency in these latitudes.

Course of the Sunspot Cycle.In Fig. I are plotted the annual means of the sunspot relative numbers for a period covering the whole of the last and present cycles, and from these a rough idea of the characteristics of the present cycle can be gained. It is seen that the solar activity increased exceptionally quickly from the minimum in 1944, reaching, in three years, a far greater value than was reached in the first four years after the preceding minimum in 1933. Sunspot activity during 1947 was thus, generally speaking, at a bigher level than at any time in the preceding cycle, and indeed, was higher than it has been during any year since r778. In fact, during the period of 198 years covered by the continuous records there is only that one year during which the mean sunspot activity was greater than that during 1947 and that 169 years ago. We are thus perhaps fortunate in living at an epoch during which the possibilities for observing the effects of high solar activity upon radio communication-and upon other
terrestial phenomena-are such as do not occur very frequently.

However, there are indications that the maximum in the present sunspot cycle has now been reached, and that during 1948 the activity will be decreasing. We cannot, however, be at all certain about this, since there is no reliable way of telling exactly what will happen round about a period of maximum activity like the present. As we shall later see, however, the value of sunspot relative number recorded in May, 1947, has not since been reached, and, during the last few months of the year, there was a more or ${ }^{1}$ less steady fall in the activity. Altogether, therefore, we should expect 1948 to be the first year in the "decreasing" phase of the present cycle. Sunspot cycle curves are, however, of the "' sawtooth " variety, indicating a longer period for the "decreasing" than for the "increasing " phase, so that we should not, in any case, expect the activity to fall during 1948 to the same extent that it rose during 1947. 1948, then, may be expected to be a year of high solar activity and consequently of high usable frequencies for long-distance radio communication. During the winter 1948-49, however, these frequencies are likely to be somewhat lower than they are at the present time.

Ionospheric Variations. -- In Fig. 2 are plotted (top curve) the monthly means of the sunspot relative numbers for each month of the years 1944-47, and (bottom curve) the monthly means of the noon critical frequencies of the F_{2} layer for the same period, as measured in England.

The sunspot activity is seen to vary erratically month by month, but to have a generally increasing characteristic towards May, 1947. In May it reached the phenomenally high value of 225 (this is a provisional number, and is, therefore, subject to later correction when the observations of a number of observatories are taken into account). Only twice before within the period covered by continuous records has the monthly mean reached a value exceeding 200, namely, in December, 1836 , when it was 206.2, and in May, 1778, when it was 238 .9.

The bottom curve of Fig. 2
shows some interesting features, the first of which is the gencral sweep upwards of the critical frequencies in sympathy with the increasing sunspot activity, due, of course, to the increasing level of ionization of the gases in the F_{2} layer under the influence of ionizing solar rays of a gradually increasing intensity. It is seen that, as between the epochs of minimum and of maximum activity the increase in noon critical frequency was of the order of $3.0 \mathrm{Mc} / \mathrm{s}$ during the summer and $8.0 \mathrm{Mc} / \mathrm{s}$ during the winter, implying increases in the M.U.F. for longest-distance transmission of about $9.0 \mathrm{Mc} / \mathrm{s}$ and $29.0 \mathrm{Mc} / \mathrm{s}$ respectively.

In this curve there are, of course, the seasonal variations in critical frequency superimposed on those due to the sunspot cycle, and these are interesting in themselves. First, as is always the case with the F_{2} layer in the Northern Hemisphere, the lowest daytime values of critical fre-
cal frequencies of the year occurring, generally speaking, in November and in February.

Thus, in November, 1947, the mean critical frequency for noon was $14.0 \mathrm{Mc} / \mathrm{s}$, implying a mean M.U.F. for longest-distance working in these latitudes of $46 \mathrm{Mc} / \mathrm{s}$. This high value of noon critical frequency will probably not be exceeded in the present cycle, so we may come to regard November, 1947, as being the month of highest frequency radio conditions for the current sunspot cycle, and indeed for many years years past, and possibly for many yet to come. These high critical frequencies were not, of course, unexpected, as will be evident from a quotation from last year's "Ionosphere Review" (Wireless World, March, 1947, P. 120): ' From Figs. 2 and 3 we might hazard a guess that the highest daytime critical frequencies of the present cycle will occur about October or November of 1947, and that during the latter month the

Fig. 2. Monthly means of sunspot relative numbers and noon F_{2} critical frequencies for the past four years.
quency occur each year during the midsummer period. Then there is, each year, an increase of critical frequency towards the winter, but with the peculiar " mid-winter effect" causing a small fall in the critical frequency at the extreme mid-winter period. This results in the highest daytime criti-
noon mean is likely to be of the order of $14.0 \mathrm{Mc} / \mathrm{s}$."

Correlating Sunspot and Ionospheric Phenomena.-In Fig. 3 are given (full-line curve) the twelve-month running average value of the sunspot number during the present sunspot cycle, and (dashed line curves) the

Ionosphere Review: 1947-
twelve-month running average of the noon and midnight critical frequencies as obtained in England. The object of presenting the information in this way is to smooth out the month-by-month fluctuations on the sunspot activity and the seasonal fluctuation in the critical frequency variations, and thus render the long-period effects in both quantities more apparent. It is done by taking for the mean for the epoch at the centre of any month the average of the twelve-monthly means having that month as the centre. Both noon and midnight critical frequencies are seen to respond to the changing sunspot activity relatively faithfully. The greatest degree of critical frequency variation over the cycle occurs in the noon curve-for at noon the sun's effect upon the ionsphere is more direct-and we see that the increase in mean critical frequency over the cycle has been about $5.4 \mathrm{Mc} / \mathrm{s}$. Though over most of the cycle the correlation was very good, during the past few months the increase in critical frequency has lagged behind that in the sunspot numbers, as if some sort of saturation effect in the ionization were occurring. The midnight critical frequency, which is, of course, much lower than that at noon, also follows. the increasing sunspot activity faithfully, and does not show the "saturation effect" referred to. Here the increase over the cycle is about $2.8 \mathrm{Mc} / \mathrm{s}$.

The good correlation between the twelve-month running averages of sunspot number and critical frequency applies to all layers. and all times of day, the magnitude of the critical frequency change varying with the layer and time of day. Thus the response of the whole ionosphere to variations in the activity of its producing agent, the sun, is, over a period of time, remarkably faithful and well defined.

When we consider this close correlation of the measured critical frequency - and thus, implicitly, of the M.U.F.-with the observed sunspot activity, and when we turn back and examine the sunspot activity during past cycles, we are forced to a rather remarkable yet perfectly logical conclusion-that short-wave pro-
pagation conditions during 1947 must have been generally better, and particularly so on the higher frequency bands than they have been during any year since 1778. This will be apparent when it is remembered that the ionization of the absorbing layers is not increased by the increasing sunspot activity to the same extent as is the ionization of the refracting layers. Thus, with exceptionally high activity the M.U.F. will be exceptionally high, the L.U.H.F. (lowest useful high frequency) will be only moderately so, and
down variation in the ionization of the layers, and hence in the M.U.F.s, from day to day, even under normal conditions, and the most information about long-distance high-frequency propagation will be obtained on frequencies above these regular day-by-day ones. We may briefly examine a few such results to see what they indicate.

We must, of course, confine our attention to propagation over long distances by way of the regular ionospheric layers. For, as is well known, there frequently oc.

Fig. 3. Twelve-month running averages of sunspot numbers and of noon and midnight F_{2} critical frequencies in England.
so the band of usable frequencies will be at its widest.
Practical Results. - The high theoretical values of M.U.F. indicated by the measured critical frequencies during 1947 seem to have been well borne out by the results achieved in actual practice. Higher working frequencies were usable during the autumn and winter in the various communication services than, generally speaking, have ever been regularly usable before. But regular communication services are not usually in a position to experiment in the use of very high frequencies for long-distance work -they have to maintain services on frequencies that are well received on every day, although, of course, it is advantageous to work on the highest frequencies on which this object can, at any particular time, be well achieved. But there is considerable up-and-
cur during the summer months cases of propagation over medium distances on frequencies up to 100 Mc / s. Such transmissions however, are effected either by way of Sporadic E ionization or by means of refraction within the troposphere, and, since both these phenomena appear not to be affected by the changing sunspot activity, they have no significance in the present case.

Long Ranges on $50 \mathrm{Mc} / \mathrm{s}$.-At the last sunspot maximum (see Fig. I) there was no authenticated case of long-distance transmission being effected on the amateur $50-\mathrm{Mc} / \mathrm{s}$ frequency. During the winter 1946-47, with the sunspot activity approaching that of the last maximum, one such case was recorded between U.S.A. and this country, and one between Holland and South Africa. Since then the sunspot activity has considerably increased, and during
the later part of 1947-particularly during November-numerous amateur transmissions on this frequency have been effected between the U.S.A. and Europe, and over many other paths as well. The fact that long-distance transmission on $50 \mathrm{Mc} / \mathrm{s}$ has become frequently possible, albeit only during the appropriate season of a year of exceptional sunspot activity like 1947, is certainly interesting information as to the highest frequencies which the regular ionosphere layers are ever likely to become capable of propagating. One is tempted to add that, after the winter of 1948-49, it is unlikely that the amateurs will be able to work their $50-\mathrm{Mc} / \mathrm{s}$ contacts again for very many years to come.

Turning to the somewhat lower frequency of $45 \mathrm{Mc} / \mathrm{s}$ - upon which the vision channel of the London Television Service oper-ates-it was well known by observations made around the last sunspot maximum that long-distance propagation on this frequency could occur, and on such paths as that between the U.S.A. and this country. The observations indicated that such transmissions would be possible-though not by any means a daily occurrenceduring the winters of years when the sunspot number was of the order of 100 or greater, whilst the implication was that they would be possible over southerly transmission paths for longer seasonal periods than in the case of transatlantic paths.

This idea seems, in general, to have been well confirmed. Last winter the sound transmissions on $4 \mathrm{I} .5 \mathrm{Mc} / \mathrm{s}$ were received in numerous parts of the world, and this autumn and winter the $45-\mathrm{Mc} / \mathrm{s}$ signals have also been frequently received. Furthermore, considerable interference has been experienced by viewers in this country from American F.M. stations operating within the vision channel and, in particular, station WEFM in Chicago has frequently been received with such an intensity as to constitute a strong source of interference with the television picture. All these events are of great interest.

Forecast for 1948.-It will be seen from Fig. 3 that the running average sunspot curve has now commenced to fall, and, although
the critical frequency curves have not yet begun to do so the indications are that they will soon follow suit. As has been said, attempts to forecast the variations in solar activity a long way ahead have not hitherto been conspicuously successful. And, at a time like the present, when the activity is only just showing signs of a reversal in its trend, prediction is more than usually difficult. However, we may be justified in assuming that during 1948 the activity will, in general, decrease, and, remembering that it usually decreases at a slower rate than that at which it increases, and also that during the first year after the maximum the decrease is often particularly slow, estimate that the running average of sunspot number for the middle of 1948 will be about 120 . This would imply that the running average of the noon critical frequency should have fallen from its maximum value by about 0.8 Mc / s to about $9.8 \mathrm{Mc} / \mathrm{s}$, and that for midnight by about $0.5 \mathrm{Mc} / \mathrm{s}$ to about $5.2 \mathrm{Mc} / \mathrm{s}$.

It is of more practical use, however, to know, not what the running average critical frequency may be at a particular epoch, but what value of monthly mean critical frequency is likely to occur during a particular month. It is not possible to deduce from the twelve-month running average what the monthly mean for any one month is likely to be, owing to the erratic nature of the month-by-month variations in solar activity. But it would appear from a study of Figs. 2 and 3 that by November, 1948, the noon mean critical frequency would only have fallen to about $12.6 \mathrm{Mc} / \mathrm{s}$. This implies that the mean noon M.U.F. for longestdistance working in these latitudes should be of the order of 41.6 Mc / s, as compared with $46 \mathrm{Mc} / \mathrm{s}$ in 1947, whilst on certain days it should be quite considerably higher than this.

It is not possible in an article like this to say just how these changes will affect the working frequencies for communication services during 1948 , for the detailed specification of such frequencies for all directions and distances is a very complex business. Generally speaking, however, it appears that, so far as the
sunspot cycle is concerned, 194° will be a year of little change. There will, of course, be the alterations in working frequencies necessitated by the seasonal changes, which themselves vary considerably with the geographical location of the transmission paths, but apart from these the alterations made necessary should be of a minor character only. The daytime working frequencies should, it is anticipated, be from 3 to $6 \mathrm{Mc} / \mathrm{s}$ lower next November than they are at present, varying according to the different circuits, whilst the decrease in the nighttime working frequencies should be of a lower order than this. And the $50-\mathrm{Mc} / \mathrm{s}$ amateur band, which was about ro per cent above the noon mean monthly M.U.F. during November, 1947, should be about 20 per cent above it next November. Nevertheless, since the sum-spot activity will still be high, radio conditions should, in general, be good, and favour the higher frequencies.

Miniature Portable

DESIGNED in the form of a book, this self-contained battery superhet measures $8 \frac{1}{\operatorname{in}} \times 6$ in $\times 2 \frac{3}{4} \mathrm{in}$

(200-550 metres) and makes use of a sliding metal panel as an aerial. A socket is provided for an additional outside aerial if required. Mullard 1.4 volt miniature range valves are employed and 120 mW of power is delivered to the $3 \frac{1}{2}$-in loudspeaker.

The set is available in a variety of colours and the price is $£ 13$ 13s oxclusive of purchase tax. The makers are Hermes, Brooke and Co., Poynters, Cobham, Surrey.

IN this set we see the result of an eminently rational pooling of experience in the diverse fields of radio and car equipment manufacture. The design of the set represents collaboration between the Gramophone Company (H.M.V.) and Smith's Motor Accessories; it is sold, installed and serviced by a subsidiary firm, Radiomobile, Ltd.
The user of a car radio, who is very often the driver, can rarely do more than give the set a cursory glance before switching on, or changing the programme, so that the very simplest form of tuning is most desirable. This fact has been realized by the designers of the Radiomobile set and most of the operations are effected by push buttons. These include programme selection, waveband changing and tone control.

If a passenger wishes to search for a programme not previously set-up on the push buttons he or she can do so merely by pressing in a knob and turning the set in the customary fashion. A wavelength calibrated scale and pointer are included for this purpose.

All the controls of the set are grouped on a small panel measuring $9 \frac{1}{8} \times 2 \frac{1}{6}$ in mounted slightly forward of the receiver unit proper. It has a detachable moulded escutcheon which is available in a range of colours to harmonize with the car instru-

The Model 100 em bodied in the design of the fascia board of a car.
ment panel. The front of the receiver unit has a slight backward tilt and in this inclined face is mounted a 5 m loudspeaker.

As the available space for mounting the receiver in some cars may be limited the receiver and power supply units are separate entities, but normally combined. They can be separated when occasion demands and the power unit could then be stowed either in the engine compartment or anywhere else more convenient.

Considerable use is made of miniature components in order to keep the size as small as possible and the weight low. Miniature type valves of the all-glass pattern are used and as a result the overall dimensions, excluding the power unit, are $9 \frac{3}{4}$ in wide, $4 \frac{7}{8}$ in high and $9 \frac{3}{8}$ in deep. The power unit adds another 2 gin to the depth. The total weight is $17 \frac{1}{2} 1 \mathrm{~b}$.

The push buttons for programme selection act directly on

TEST REPDRT

Push-button Car Set

the gang condenser and each rotates it a pre-determined amount. The setting-up process is very simple; the desircd station is tuned in manually and then one of the push buttons is made to register with this setting of the condenser. This operation is effected by loosening the milled head of the button, allowing the spindle to be drawn in by its spring and register on its conden-

Theoretical circuit of the Model 100 showing the power unit arranged for connection to a 12 -volt car installation with a positive earth.
ser stop, then retightening the milled head.

By repeating this procedure, choosing either medium- or longwave stations, four pre-selected programmes become available by finger-tip control. It is perfectly feasible to make these changes in the selected stations while on the road, the passenger being able to do it while the car is actually in motion as no tools of any kind are required.

The four-programme push buttons are just above and to the right of the scale aperture

Radiomobile Model 100

and they are balanced on the left by four more, two for tone and two for waveband switching. Immediately to the right of the scale aperture is the manual tuning control which drives the condenser through bevel gears and arranged so that a spring normally holds the driving bevel out of mesh. This prevents disturbing the tuning by turning the knob accidently. On the left of

Circuit. Five-valve (pIus rectifier) superhet. Push - button manual tuning. Push-button wave. change.
Push-button tone control.
Volume combined with on-off switch.
Tuning Range. Output. Input. 19500 m.
$2,000 \mathrm{matts}$.
3.25 A at 12 V (G.V models availabie).
the input circuit and merely results in certain limits being set for the length of the co-axial cable, and the type that can be used. Included in the aerial circuit is a form of anti-interference filter.

The receiver has an R.F. stage with a tuned input circuit with a wide-band coupling linking its anode circuit to the frequency

the scale is another rotary control knob. This is the combined volume control and on-off switch.
The superheterodyne circuit is by no means orthodox. The very short aerial that has to be used necessitates a sensitivity
above the average for a broadcast receiver. As the signal pick-up is small, matching the aerial and its screened co-axial cable to the receiver input circuit is of far more importance than usual. But this is embodied in the design of
changer. This covers medium and long waves without switching and obviates the need for a third section in the tuning gang condenser. There is included also a further interference rejection network.

Radiomobile Model 100-

The frequency changer is a triode-hexode of normal design, and it is followed by one I.F. stage working on $465 \mathrm{kc} / \mathrm{s}$ and having a band width of $10 \mathrm{kc} / \mathrm{s}$ for $6 d b$ attenuation at the limits.

Signal detection, A.G.C., and one stage of A.F. amplification, are provided by a double-diodetriode which in turn is resistancecapacity coupled to an A.F. pentode giving about 3.5 watts output.
A.G.C. is applied in full to the R.F., F.C. and I.F stages, and consequently good control is obtained under all conditions of operation, and they vary very considerably on the road.

High tension at 210 volts and 55 mA is supplied by a vibrator in conjunction with a transformer and valve rectifier. This, and the filaments of the valves, which are 6.3 -volt type and arranged in series-parallel, draw 3.25 amps from the car's 12 -volt battery. The valves used in the set and in the sequence described here are W8r, X8ı, W8ı, DL8ı, KT8ı and U82, the last mentioned being the H.T. rectifier.

It is a tribute to the design that with the majority of modern cars only the minimum of engine suppression is needed. Some rearrangement of the plug leads and H.T. wiring may be required, also possibly repositioning of the coil. As for suppressors, one $5-\mathrm{k} \Omega$ resistor in the lead from the coil to the distributor and a few $0.5-\mu \mathrm{F}$ capacitors across some of the L.T. make and break contacting points will generally suffice.

Radiomobile is building up an installation and servicing organization throughout the country. Likely mechanics drawn mainly from garages are given a week's intensive course at the Radiomobile school at Hayes, Middlesex. Here they are coached in the circuit technique, in faultfinding, in installation and the many other aspects of the subject deemed necessary to inspire cofidence in the pupils to tackle any problem arising from the use of this equipment.

A road test was made with a Model roo fitted in a 1947 family saloon car, the installation having been carried out by the Radiomobile service department in Cricklewood. One suppressor re-
sistor only was fitted in the ignition system and a few changes were made in the run of the leads from the distributor to the plugs. The object of this was to eliminate, so far as possible, loops between the leads and engine casing, thereby minimizing the radiation from these leads. A roof aerial was fitted just above the middle of the windscreen.

With the volume control turned fully up and the set detuned from a station so that maximum sensitivity was obtained, a slight suspicion of ignition noise could be discerned in the background noise of the set. This condition of maximum sensitivity rarely, if ever, is needed for broadcast reception, as in most cases the signal will be strong enough to operate the A.G.C. and so lower the general sensitivity.

As an example of this, the B.B.C. Moorside Edge transmitter was receivable in London at sufficient strength to operate the A.G.C. except in badly
screened localities. Several Continental stations were tuned in with ease and provided a signal of real entertainment value. Indeed, on open ground, such as on Wimbledon Common, these stations were of such strength that the volume control had to be backed off, and this was during daylight.

The only interference of any consequence experienced during the tests emanated from passing lorries, motor buses and trolley buses, the former two producing typical ignition noises and the last mentioned the "scratchy"' type of interference associated with electrical contacting equipment. The overhead power wires accentuated this, but at no time were these forms of interference really troublesome, due, no doubt, to the filtering action of the built-in noise suppressors.

The set sold by Radiomobile, Ltd., Cricklewood Works, London, N.W.2, costs $\notin 276 \mathrm{~s}$, plus tio 4 s 9 d purchase tax.

Wolsey Television Aerial

Use of Synthetic Rubber Waterproof Fittings

SEVERAL improvements have been made in the design of Wolsey television aerials and the latest models are lighter, stronger and more weatherproof than hitherto.

Synthetic rubber waterproof fittings are used at the joints between the aerial rods and junction boxes in the latest Wolsey television aerial.
weighs only 4 lb and consists of a light-weight tubular cross arm with welded-on masthead cap and end junction boxes.

Aluminium alloy tubes, fitted with synthetic rubber connectors, screw into waterproof sockets on the junction boxes. The aerial junction box has a removable cover giving access to the centre connections for joining up the feeder. The other has a sealed-in straight-through connector.

Either co-axial or twin wire cable can be used. It is brought out through a hole at the masthead cup so that it can be lashed to and brought down the pole.

The "H" pattern acrial, which is listed as model H / M, is a closespaced array with the reflector 32 in , or $\frac{1}{4} \lambda$ approximately at $45 \mathrm{Mc} / \mathrm{s}$ behind the aerial. The complete aerial, less pole and securing fittings, costs 67s 6d. Wall brackets, chimney stack lashings and feeder are extra. For example, a double set of chimney stack lashings and 8 ft pole costs 60 s 6 d .

A single dipole without reflector and constructed on the same lightweight and weatherproof lines is also available. It costs 37 s 6 d .

The makers are Wolsey Television, Ltd.. 87, Brixton Hill, London, S.W.2.

BRIMAR
 still "BRIMARIZING!

TTYPES 36 and $39 / 44$ were widely used in Philco and other American type receivers dated 1933-1936. Replacement by Brimar types $6 J 7 G$ and $6 K 7 G$ respectively, involves a change of sockets and re-alignment of receiver. The substitution of the new valves will give increased gain and it may be necessary to reduce screen voltages or re-arrange wiring to preserve stability.

TYPE	CHANGE SOCKET		CHANGE CONNECTIONS		OTHER WORK NECESSARY	PERFORMANCE CHANGE
	FROM	TO	FROM OLD SOCKET	TO NEW SOCKET		
617G	U.X. 5 pin.	OCTAL	Pin No. $\begin{array}{r}1 \\ 2 \\ 3\end{array}$	$\begin{array}{r}\text { Pin No. } 2 \\ 3 \\ 4 \\ 4 \\ 8 \\ \\ \hline\end{array}$	Connect Pins I \& 5 to Pin No. 8. Change cop cap connector. Re-allgn receiver. See note.	SLIGHTLY HIGHER GAIN.
6K7G	$\begin{aligned} & \text { U.X. } \\ & 5 \text { pin. } \end{aligned}$	OCTAL		$\begin{array}{r} \text { Pin No. } 2 \\ 3 \\ 4 \\ 8 \\ 7 \end{array}$	Connect Pin 5 to Pin 8. Change top cap connector. Re-align recelver.	SLIGHTLY HIGHER GAIN.

Note: A higher value of screen dropplng reslstor (to Pin 4 of Type 6J7G) may be necessary to ensure that the screen voltage does not exceed 100 volis. rebair lines on the madio sets may able mean working happily in the
be keept home and not waiting on the sher

STANDARD TELEPHONES AND CABLES LIMITED, FGGTSCRAY SIhCUP. KENT.

PREMIER RADIO COMPANY

 MORRIS \& CO. (RADIO) LTD ALL POST ORDERS to 167 LOWER CLAPTON RD., LONDON, E.5. \quad 'Phone: Amherst 4723.ALL CALLERS to 169 FLEET STREET, LONDON, E.C.4.
'Phone: Central 2833. Terms of Business : Cash with order or C.O.D. over $£ 1$.

Send 21 ${ }_{2}$ d stamp for latest list.

RADIOGRAM CAEINETS

RADIOGRAM CABDEETS. Dignifed appearance and good warkmanship. Bize 313 in blgh, 18iln. dcep,
33in. Wide. French pollished, veneered walnut. Price sc8 7 A .3 S Also avallable complete with electric
 or with 8 record-miser changer, $£ 48$ i8s. Od.

GOVERNMENT SURPLUS OFFERS

D/C TO A/C CONVERTERS. TYPE 1-Inpat 18/24 \mathbf{D}. D/C. Onzput $230 \mathrm{v} 00 \mathrm{cycleg}, 100$ watls, 25 . ; TYPE $2-$ Inprt $12 \nabla . D / O$. Output 230 v. 50 cycles, 75 watts, $\mathbf{E 6}$; TIPE 8-innut 100 v. D/C. Output 230 v. 50 cycles, HIOERYOLTA.
HIGE YOLTAGE BLOCK CONDENSERS. $1 \mathrm{ml} . \frac{2}{500} \mathrm{v}$-,

SEORT WADE CONDENSERS. High-grado; Ceranulc tanulation- Buper Midgot type. Bingle-gangs avallable in 10, 20, 50, 75, 100 p.I. 175 p.f. has double spindie for GaARO, in $4.8,9 B$
agAre, it 4.8, 9.8, $27.1,50,75$ p.f. Price 5/-.
driven gemerator with two soparate units of a batleryarfien sencrator with ewo soparate units for approxi-
mately 1 metre and 7 metre operation. include 2 CTB (VR185) homed triodes and one EASO dlode, also a inge quantity of U.H.F. tuning gear. Contalided in a leatranse, size $1 \mathrm{ilin}, \times 8 \mathrm{in} . \times 81 \mathrm{n}$. Price $30 /$ -
OUTPUT TESTEX TYPE D consist of anit incorporating three separsto diode delectors and a s-raive Ainplilier, each doode with the separate $0 . H, F$. Tuning Byptem, A retractuble 185n. aerial is fitted and three VR130 (HL23) Faver, 8 D.I. Dhodes and a larse quanthy of U.H.F.
 $18 \times 8 \times 8 i n$. Price 3
15

TJA UIT TYPE 78 conalits of a apeclal purpose Oscllloncope that requires only rewhing and the addition
of a tew condensers and realstorm to convert into a of a tew condensern and resistorn to convert into a tubo and 1 SU220A. 1 EB34, $15 Z 4,3$ BP41, 2 EABO. Are tncluded. Controls are ." Erightreas." "Veloclty," "X Ehift," "Y Hhif," Pocus Amplhter. "in/ont,
Cartare ard pacldag, $20 /$ H. Tx., incorportiea a 250 v. $50 \mathrm{c} / \mathrm{s}$ Power Pack, witb
 Cante quantley of condenvert, realator and tuning gear. 8/fa. Pidee 15/a. Carringe and packing 5;
 anth incopporating KTssc viven, Lelephone line (Unieelecter) arlich with 8 poles, 26 cantect, 8 P.O. sype reliss, 9 blgh-apeed relagy, and a quantity of other
anderial. Cominingd in an steractre rebay rack iype mial ces $10 \times 10 \times 91 \mathrm{n}$. deep. Price of bis. or

R107 ONE OF TEE ARMY'S FINEST COMMONICATIONS RECEIVER. (Sec . . W.W., Aug., 1945 .) 9 Valves, IR.F. amp. ore. Frequency Changer, 2 TF's. (465 £c.), 2 nd Detector, AVC,
Af amp. AC malns, $100-250$ v, or 12 r , accum. thequency range 17.5 to $7 \mathrm{~m} / \mathrm{cs} ., 7.25 \mathrm{~mm} / \mathrm{cs}$. 10 $2.9 \mathrm{~m} / \mathrm{ca}, 30$ to $1.2 \mathrm{mc} / \mathrm{s}$. Monltor L. s , bullt in. Complete with output siage. Write for full details. $E 16$ 16s. complete.

VARIABLE CONDENSERS. Ceramic insutatlon 2 gang
 1-kang 0005, 5/- i 2.gnn

TYPE 103 ROTARY TRANSFORMER, Normal ratmb is 19 v. D/Cinput. Output, 300 volts $30 \mathrm{~m} / \mathrm{s}$ and 6.5 volt 3 a. D/Q. By applyipg between 200 and 200 volte D/C
to the H.T. output olde, the two low-tepalon windings to the H.T. output side, the two low-tension windings may be used to charge accumulntors. The 19 -volt alde will charge a $6-$ volc aceumulator at $2-3$ amps. the 6.5 side a 2 -volt accumulator at $1-2 \mathrm{a}$. With a 12 -volt input to the 19 -vole side, 180 v . at $30 \mathrm{~m} / \mathrm{a}$ and 4 v . at 3 a . may be obtained. With a 6-volt input to the $6-5$ side, 160 V at 30 mola may bs obtained. By extending the spindle Which is nuah with the irame and applying 200 to 250 v . D/C mains to the 300 v. aide, the unit becomes a poweriul high-speed electric motor, auitable for aman drilling mput to the 6.5 v . or 19 F . side. It employs a powerful ing magrat and is of substantial construction, costing originally over e5. A fortunate purchase enables us to ofer thess one unles at 10/-.
DENCO C.T. 3 COIL TURRET COVERS. 15 to $42 \mathrm{~m} / \mathrm{s}$ in alx bands. Consists of completely wired coll pacis for commomication recelver, including trimniers. paddera, R.F stage, Iron cores, polystyrene insulation. Circults nvaitible at $1 / 6$. Price $E 7$ Os. 10 d .
LOUDSPEAKERS. 5in. PM., 15/-, with trans., 20/-. 6in. PA., 17/6, with trans., 22/6. 8in. PM., 20/न, with trans. $25 / \mathrm{M}$. 10 in. P. M., $15 \Omega G$ watt, $47 / 6$. 12 in . P.M. $15 \Omega 12$ wnit, $£ 5.12 \mathrm{in} . \mathrm{P} . \mathrm{M} .15 \Omega 12$ watt twincone high fidelity, 88 8n. 12 ln . P.M. 20 watt $\mathrm{E}^{7} 7$. Fineld $1,140 \Omega$ Freld with trans.. 27/6. 101n. 2,100 Ω Field $3 \Omega G$ wat
BABY ALARM KIT. Consiste of a complete kit. of parts for a mains-drlven amplifier, mlerophone and Midget speaker, to enable sound of bolys's brenthing or criting
to be beard in any room. Complete with circuit. $55 /-$ CRYSTAL RECEIVER EIT. Completo with phones. The ideal gift for the schoolboy, 10/\%.
Wearite tunang Pack. A super job. Completely wired with padders and trimmera. Long- medium- and ahort-wares. Iron core colls, 42/-.
2-VALVE SHORT-WAVE BATTERY KIT. A completo Flt of parts for \& n-ralve receiver, covering $15-600$ metres, nctuding valven, colls, drilled chassis, H.T. and L.T. dry of double headphones and full instructions. Price 5316 s .41
STANDARD OUTPOT TRANSFORMDRS. Match any push-pull pentodes to 3 or 15 ohms. Handles 8 watts, 17/8.
GRAMOPHONE AMPLIFTER EIT, A complete KJt of perta to construct a good quality malns-driven 21 -watt gramophone amplifer. Mny be used fith any plek-up. kramophone amplifer. hay
Complete with circult, 83 Es.
SUPER OUTPUT TRANSFORMERS, By means of a serles parallel srangement whereln the maximum whading is uned for each ratlo extremely high efficlency Is obtained. Any ralve alagle or puab pull may be matched to any volce Coll (2 to 30 ohm) ISpe Mo.15.15 watto, 35/-
METERS. A huge purchase of miltary surplus meters allowe us to orfer the following bargains. Best makes. Bakellte cases, prices are approx, t orisinal cost. Price Range Ext. Basic Pitting Type 300 F . Dlam. Movement 300
600
$21 A$
$4 A$
$20 A$
$10 A$
$25 A$
$25 A$
13
150
200
$1 M$ 10 A
20 A
25 A
25 A
$1 \mathrm{M} / \mathrm{A}$
150 M
200 M
$1 \mathrm{M} / \mathrm{A}$
BM
B M/A

Flush M.I.A/O 12 $\begin{array}{llll}\text { Flush } & \text { M.1.A/O } & \ldots & 12 / 6 \\ \text { Proj. } & \text { M/CD/O } & \ldots & 12 / 6 \\ \text { Flunh } & \text { Thermo } & \ldots . & 7 / 6 \\ \text { Port } & \text { H. W/ro } & \ldots . . & 7 / 6 \\ \text { Flush } & \text { M/CD/O } & \ldots & 7 / 6\end{array}$ M/CDIC M/CDIO.
M/CDO M/OD/O M/CD/O
M/CDIO
M/CD/C
$M / C D$
$M / O D / C$
$M / O D / O$
20\%

MIDGET RADIO KITS

MIDGET RADIO KIT. Bulld your own mildget rado A complete set of parts, including valves, loudapeaher and instructions. In fact, everything except cablact necespary to build f-valve Medlum and long Wave
T.J.F. rudio operating on 200.250 w malns, $\Delta /($ or 1$)$, C. T.R.F. rudio operating on 200.250 v . malns, Δ / C or $11, \mathrm{C}$. $10 \times 6 \times 6 \mathrm{in}$. Covernplete 200-557 and $700-2,000$. Size $10 \times 6 \times 6 \mathrm{l}$. Completely includlog cax, 68 0s. 11d
SUPERHET MIDGET RADIO KIT. A complete kIt of parts for a σ-valve tuperhet. Cowers $16-60$ and $200-b 57$ metres, AC/DC 200-200 v. Slze $10 \times 8 \times 61 \mathrm{n}$. Com. pletely drilled chnsala. Price Including tax, $\mathbf{f} \boldsymbol{\theta}$. An attractive brown hakelite cabluet can be aupplied for either kit at a coat of 27;4.
ELECTROSTATIC VOLT METERS, O-BK, 31 ln . scale, PERRANTI 0-500 MLCROAMP METERS, $3 \| \mathrm{ln}$. dla scale 2 lin., res. 75 ohuns., fush mounting, $25 /$.
ATR-DIELECTRIC TRIMMERS. Buper-miluset variablen ceramic insulation, screw-driver adjustment, 26,60 or $100 \mathrm{pH} .1 /-$
FERRANTI 1 MILLIAMP METERS. $3!\mathrm{ln}$. exteroal diameter, flush mounting, wilh self-contained Wealing. house bridge recther. Scale marked $0-10$ volts with fifty divisions, fitted in well-made wooden boa $6 \times 6 \times$ bin.. $35 /=$
MAINE TRANSFORMERS. MHIURY surplus. All 230 v . 50 cycles input.
Type No.
$600-0-500 \mathrm{v}, 150 \mathrm{~m} / \mathrm{L} .4$ Price
$160 \mathrm{~m} / \mathrm{L} .4$ จ. 2ta. 4 下. 1 a.
$4886-0.865$ v. $500 \mathrm{~m} / \mathrm{a}$. Tapped at 690
$5 \begin{array}{ccc}450-0.450 & \text { v. } 150 \mathrm{~m} / \mathrm{a} \text {. Tapped } 300\end{array}$

5-7 a. 0.3 v. 1-2 a..
30 Output 30 V. 4 n. and ioi v. i.
33 wound
3 Output $700-700 \mathrm{v} .150 \mathrm{~m} / \mathrm{s} .1,000 \mathrm{v} .30 \mathrm{~m} / \mathrm{s}$.
33 Output 38 v. at 2 3 tapped at $32,34,36$ 15
ALL-WAVE SUPEREET EIT. A KIt of Parla to buldd a G-valve (plus rectifer) recedver covering $16-60$ thetres. Medlum and Long-winve bands. Valve line-1p $6 \mathrm{~K} 6,6 \mathrm{K7}$. 6Q7, 6.57, two $26 A 6$ in pushpull. Hetal Rectifiers are Incorporated for II.T. supply. Output impedance Le for 3 and 18 ohms, The latest Wearite Con Pack IncorporatIng Iron Dust Colls is used, making construction and aligament extremely almple. A pick-up posicion on the wavechange switch and pickup terminals in provided. A complete kit Including valves but without speaker of csblinet. Changis stze it $\times 6$ in. Overall helght, 9 in. Price E11 16. 3d
Bultable loudspenkers are the GOODMANS 101n. 6-wntt P.M. at $47 / 6$, or for superlative reprodaction, the Goodmana 12in. P.M. at 88 15s.
SUPERHET TUNING PACKS. Completely wired and aigned. 13-40. 40-120, 100.570 metres. R.F. stage, $400 \mathrm{k} / \mathrm{c}$: 8 connections only. Completo with $3-\mathrm{gang}$ condemer, calbrated, engraved Perapex dial, and G / N drive, Litx Found polyatyrene Insulation, pernieabilty tuned LF:', $7 \mathrm{k} / \mathrm{c}$. band wid th. Fitce com plete 8317 s .6 d . ELECTRIC GRAMOREONE MOTOR8. A few sratlable. Write for detall.
ALUMTIUM CBAssig. Bubstantisily mado of bright sluminum, with four side
$7 \times 31 \times 2 i n$.
$10 \times 8 \times 21 \mathrm{in}$.

\qquad
\qquad

\author{[^1]}

\qquad
\qquad

Cleaning

 Use of Solvents:

 Use of Solvents: Effect of Lubrication

 Effect of Lubrication} Switch Contacts

By J. J. PAYNE, Grad. I.E.E. (Admiralty Signal Establishment)

CARBBON tetrachloride is generally accepted as a useful agent for removing the cause of defective or noisy switch contacts and it is widely believed that it functions by removing surface films of grease.

The opinion that grease is often the cause of faulty contact is inaccurate, as will be seen later; it can have little or no direct effect on electrical contact. It will, in fact, be shown that a thin layer of grease is an important feature in the operation of a switch, or any form of moving contact. The real cause of noisy contact is thought to be due to particles of solid matter with insulating characteristics which mechanically lift the surfaces of the contacts apart, and are held by the thin layer of grease.
In order to study the process involved let us consider a switch of the wiping contact type. The two mating surfaces appear smooth, but in fact consist of a series of microscopic undulations. Only the high spots of these two surfaces can be in electrical contact, as shown in the figure. It

Sketch of contact surfaces.
would appear possible from this figure that the high spots of one contact could enter the valleys of the other. There is little chance of such an occurence, as it is extremely unlikely that all the scratches will be exactly parallel.

Photograph of typical wafer switch, subjected to mechanical life test after cleaning with carbon tetrachloride.

Thus high spots only will be in contact.
Consider now a layer of grease applied to these surfaces, of thickness less than the depth of the scratches, and the switch operated a few times. Due to the viscous nature of the grease, the contact pressure will force the high spots through this layer. Thus they will still make electrical contact, and the valleys will now be filled with grease. As it is the high spots which are again in contact the presence of the grease has in no way affected the area of contact, and hence the resistance. When this layer has collected sufficient foreign matter to pile up and separate the contacts, the switch will become noisy and erratic in operation. This is due to random building-up and collapsing of the piles of foreign matter during movement of the switch. When the majority of them are forced into the valleys, electrical contact between the high spots is again possible. This random effect will, therefore, result in large changes of contact resistance, even causing a series of complete makes and breaks, accompanied by the usual symptoms known as noise.

Let us now proceed to cure this fault by applying a quantity of carbon tetrachloride to the contact. As this is a solvent for the
grease, the grease will go into solution. Hence the foreign matter is no longer held to the contact faces, and will be washed off, together with the grease. As the cause of the faulty contact has been removed, our switch has now returned to its original noise-free action.

But we are not yet out of the wood. In curing the faulty switch, we have removed the film of grease. As in any mechanical device, the result will be increased friction, and, eventually, excessive wear, even though a switch is not normally operated at high speed.

A series of mechanical life tests were conducted by the author on a batch of new wafer-type switches. Half of this batch were treated with carbon tetrachloride. In every case the untreated switches showed no serious effects, while excessive whar took place on those treated. This in some cases led to the severing of the tongue on the moving contact, and in others the fixed contacts were dragged from their normal position until the moving contact jammed against their edges. The dark patches on the tongue of the switch rotor, illustrated in the accompanying photograph, represent the area denuded of plating, thereby exposing the base metal, which has suffered severely from

Cleaning Switch Contacts-
the effects of wear. One of the upper contacts clearly shows the distortion due to drag. It was known that a film of grease had been applied to the above switches during manufacture. Thus the increased life of the untreated switches can be attributed to the presence of this film. This was further confirmed by tests on treated samples, which had a new film of grease applied in the manner about to be described. The presence of this grease produced no significant change in contact resistance.

It may be concluded that the ideal switch-cleaning fluid is one which will remove any foreign matter, but will leave a film of grease deposited on the contact surfaces. A suitable method of achieving this result is to use a cleaning fluid with lubricant in solution. Such a solution when applied to a faulty switch would wash out any foreign matter in the manner previously described. Furthermore, on evaporation of the solvent a film of grease would be deposited on the surfaces. A suitable solution was found to be to per cent lanolin in white spirit or trichlorethylene.
There is a danger of flooding the switch in an attempt to make sure. This must be avoided, as excess fluid will spread over the insulation, and the thickness of film on the contact will not be increased. The effect of flooding the switch would be to deposit grease on the surface of the switch insulation. As this will also tend to collect foreign matter, trouble may eventually occur due to surface tracking.

The continued use of this method of contact cleaning may eventually lead to insulation troubles as mentioned above, although no cases of this nature have been brought to the author's attention. This difficulty may be overcome, however, by periodically cleaning the entire switch with neat solvent and when dry applying a drop of lanolin solution to the contacts. In cases where low insulation losses are of vital importance this latter method may be adopted every time such a switch is cleaned. A method of controlling the application of this solution, by colouring with an aniline dye, has been sug-
gested to the author. This would give visual indication of the area covered by solution, and would also serve as a warning of large
deposits of grease on vital insulators. Conversely the effectiveness of removing this excess grease may be observed.

Short-wave Conditions

December in Retrospect : Forecast for February

By T. W. BENNINGTON
(Engincering Divisizn, B.B.C.)

DURING December maximum usable frequencies for this latitude decreased both by day and night. The daytime decrease-mentioned in this column for December -was due to the " mid-winter effect," while the night-time decrease was the normal one due to the greater length of night in the Northern Hemisphere. Despite the daytime decrease in M.U.F.'s conditions were such that long-distance communication on the higher frequencies was good to most parts of the world, albeit frequencies as high as $50 \mathrm{Mc} / \mathrm{s}$ were seldom usable, though they had been during November. Night-time working frequencies, though relatively low, seldom fell below about $9 \mathrm{Mc} / \mathrm{s}$, except over a few high-latitude paths.

There was not much ionosphere disturbance during the month, and those storms which did occur were not of great intensity. The most disturbed period was 4 th / 13 th, and disturbances of a minor kind took place on 15th/ 16th, 23rd and 29th/ 3ist.

Forecast. - By February the "mid-winter Effect," which, in the Northern Hemisphere, always results in a decrease in the daytime F2 layer ionization round about the winter solstice, should have come to an end, and the daytime M.U.F.'s should therefore increase considerably. There should also be an appreciable increase in the nighttime M.U.F.'s, as compared with those for January.

Daytime working frequencies are thus expected again to be very high -of the same order as those which prevailed last November-and longdistance communication on exceptionally high frequencies should be frequently possible in all directions from this country. The $28-\mathrm{Mc} / \mathrm{s}$ amateur band should be regularly usable for long periods over daylit paths, and Inng-distance communication on $50 \mathrm{Mc} / \mathrm{s}$ may become an occasional possibility. In fact, conditions for the use of this latter frequency are not likely again to
be so good during the present sunspot cycle. Night-time working frequencies will be higher than during January, though frequencies as low as $9 \mathrm{Mc} / \mathrm{s}$ will still be necessary in order to maintain regular communication in some directions.

Below are given, in terms of the broadcast bands, the working frequencies which should be regularly usable during February for longdistance circuits running in different directions from this country. In addition a figure in brackets is given for the use of those whose primary interest is the exploitation of certain frequency bands, and this indicates the highest frequency likely to be usable for about 25 per cent of the time during the month for communication by way of the regular layers. All time in these reports are in G.M.T.
$\left.\begin{array}{ccccc}\text { Montreal : } & 0000 & 11 \mathrm{Mc} / \mathrm{s} & (10 \mathrm{Mc} / \mathrm{s}) \\ & 0200 & 9 & \prime \prime & (14 \\ 0000 & 11 & ", & \text { or } 15 \mathrm{Mc} / \mathrm{s} & (18 \\ \hline\end{array}\right)$

February is not usually a particularly bad month for ionosphere storms, though those which do occur are likely to be troublesome over dark transmission paths. At the time of writing it would appear that storms are more likely to occur during the periods rst $/ 4$ th, 7 th $/ 8$ th, 15th, 2 ist/22nd and 25 th/29th than on the other days of the month.

WOIRLD DF WIRELESS

Receiver Production * First Radar Patent? * New Government Radio Post

B.R.E.M.A.

THE third annual report of the British Radio Equipment Manufacturers' Association, one of the four constituent bodies of the R.I.C., was issued last month.

In the section dealing with the production programme for the year June, 1947, to May, 1948, details are given of the $£ 18,200,000$ worth of receivers which the pre-war set manufacturers are licensed by the Ministry of Supply to produce during that period. This is said to be the equivalent of $1,300,000$ sets. Special arrangements have been made to meet the needs of newcomers to the industry

An increase of $\angle 70,000$ a month over the rate of exports during the peak period of 1946 has to be maintained to the end of 1948 to meet the year's target of t_{12} million which the Government has set the industry.

It is stated that the Ministry of Supply regards car radio " as a pure luxury at this present time" and in consequence the policy of allowing free production would have to be modified.

Under " Television" the report states that the shortage of C.R. tubes is the main limiting factor to greater output of reccivers. The root of the difficulty is said to be the scarcity of skilled glass-blowers and it is therefore unlikely that the supply of tubes would mect future demands unless moulded production becomes economically possible. This, in turn, is dependent on large orders for tubes within a limited range of sizes. The question of standardizing tube sizes as a first step towards mass production is, therefore, being considered.

In reviewing the work of the Association's Technical Committee reference is made to its investigations into F.M. It is pointed out that it is likely that a frequency of around $90 \mathrm{Mc} / \mathrm{s}$ will be employed by the B.B.C. for the F.M. transmissions, whereas the original investigation into the increased cost of producing receivers for F.M. was based on the use of $45 \mathrm{Mc} / \mathrm{s}$. The further cost of covering the $90 \mathrm{Mc} / \mathrm{s}$ band "would undoubtedly be very considerable.'

HISTORIC PATENT

WHAT is believed to he WatsonWatt's first radar specification has just been published by the Patent Office. Originally filed on

September 17th, 1935, the complete specification was accepted in May, 1937, but it was withheld from publication until now, when it is issued as No. 593.017.

Watson-Watt's address on the complete specification is given as Bawdsey Research Station, Bawdsey Manor, Woodbridge, Suffolk.

Among the claims enumerated by the patentee is that of "locating the position of aircraft, marine cralt or other objects by utilizing re-radiation broadcast from the object when subjected to primary radiation, consisting in radiating from a transmitter pulses of electro-magnetic vaves of suitable frequency and po:arization separated by intervals of substantially zero radiation, and receiving the electro-magnetic pulses re-radiated from the object in an indicating receiver.'

The specification is obtainable from The Patent Office, 25 , Southampton Buildings, Chancery Lane, London, IV.C. 2 , price is inland or is Id abroad.

OUR COVER. Two rrocesses in the manufacture of C.R. tubes are given on our front cover an 'above ; showing, res ectively, annealing the neck to the bulb an! sealing-in the electrodes. The rhotogra hs were taken at the High Wycombe factory of Electronic Tubes Ltd., a Cossor subsidiary.

TELEVISION FRANCAISE

()UR note in the December issue regarding the reception of French television in this country has brought forth enquiries regarding the present transmissions from the Eiffel Tower. We, therefore, give below one or two relevant details.

The transmitter, used during the war, was installed by the Germans and was dismantled by them during the retreat. The equipment now in use was produced by Cie Française de Television.

The vision transmitter works on $46 \mathrm{Mc} / \mathrm{s}$ with a peak power of 30 klV . The scanning rate is 455 lines per frame and 25 frames per second. Sound is transmitted on $42 \mathrm{Mc} / \mathrm{s}$ with a power of 5 kW .

Transmission times (G.M.T.) are: Daily (except Sat. and Sun.), 1150-1205. Daily (except Sat. and alternate Sun.), 1600-1730. Tuesday and Friday, 2000-2130.

"SPRAYED.ON" SETS FOR INDIA

ITT is understood that a contract is about to be signed between Sargrove Electronics, Walton-onThames, and an Indian firm for the supply of roo,000 broadcast receivers. These are to be made by the ECME process (Wireless World. April, 1947), in which the principle of high-speed " printed circuit" manufacture is carried to extreme lengths by spraying on circuit elements and wiring in the form of metallic and graphite coatings on insulating panels.

The recently imposed ban on the import of completed receivers into India has been temporarily relaxed in favour of these sets, though ECME plant is ultimately to be installed there for local production.

DR. SMITH-ROSE

THE new post of Director of Radio Research in the Department of Scientific and Industrial Research is to be filled by Dr. R. L. Smitb-Rose, who has been superintendent of the Radio Division of the National Physical Laboratory since 1939.

In his new position he will be in charge of the radio research work of the D.S.I.R. for which a new station is to be built. The work at present being carried out in the N.P.L. Radio Division and the D.S.I.R Radio Station at Slough, together with the work being undertaken for the D.S.I.R. at the Ministry of

World of Wireless-

Supply's Telecommunications Research Establishment, Malvern, will be conducted at the new station.

Dr. Smith-Rose, who is 53, and was recently elected a vice-president

Dr. R. L. Smith-Rose, D.Sc., Ph.D., M.I.E.E., D.I.C., A.R.C.S.
of the American Institute of Radio Engineers, joined the staff of the electrical department of the N.P.L. in 1919 and later was a member of the small band of workers who formed the nucleus of the wireless division of that department. He has been associated with the work of the Radio Research Board since its formation in 1920. He became principal scientific officer on the formation of the Radio Division in 1933.

His researches cover radio direction finding, the propagation of radin waves and the investigation of the electrical constants of the soil and sea water and their influence on propagation.

WHAT IS RADAR?

$I^{N}$$N$ the course of recent correspondence with the Post Office on the vexed question of "What is a Broadcasting Station?" we were given inter alia a concise definition of radar. It is defined as " a radiolocation system where transmission and reception are carried out at the same location and which utilizes the reflecting or retransmitting properties of objects in order to determine their position."

This definition was given during the recent Atlantic City Conference.

PICKUP TRACKING ERRORS

THE practice of setting pickup heads at an angle to the arm to minimize tracking errors was one of the topics discussed in a lecture by W. J. Lloyd, B.Sc., A.M.I.E.E., on \because Factors in the Reprodaction of Gramophone Records" at the British Sound Recording Association meeting on December 19th. It was pointed out that although angular
tracking errors were reduced by this method, the frictional force at the stylus point did not act on a line passing through the pickup arm pivot as it does in the case of straight arms. There is a resultant force acting on the needle point towards the centre of the record and in some pickup movements the bias due to this force might give rise to more distortion than that due to the tracking error.

NEWS IN MORSE

ITis some months since we last published details of the transmissions of official news bulletins in morse in the London Press Service radiated daily by the Post Office stations. As there have been a number of changes recently we give the revised schedule below. These transmissions are intended for overseas reception.

The transmission times (G.M.T.) and the stations radiating are:0130.0315 GBV, GIJ, GAH, GPN, MIJ, MIK, GIH
$0330 \cdot 0500^{\circ}$ MIK, GIH
$0445-0545^{\circ} \mathrm{GAH}$
0800 -0030 GCV
0045-1045* GCV
$1100-1200^{\circ}$ GBV, GIM, GCV, GCF
1215-1315. GCF, GCV, G1A
$1330-1430^{*}$ GBV, GIN, GDZ, GCF
$1445-1545^{*}$ GCF, GCV, GIA, GAG
$1600-1700^{\circ}$ GBV, GIH, GBI, GCE
$1600-1700^{\circ}$ GBV, GIH, GBI, GCF
1725-1815* GBO, GCV, G1A
$1830-1030^{\circ}$ GBV, GDI, GAB, GBO, GPX
1945-2045* GPN, GPF, GAV
$2100-2200^{\circ}$ GBV', GDI', GAII, GPN $2215-2315^{\circ}$ GPN, GBI, GIH
2330.0100° GBV', GIJ, GAH, GPN, MIJ,
MIK, GIH
$2330-0030+$ GBV, GIJ, GAH, GPN, MIJ MIK, GIH
The frequencies (kc / s) on which these stations operate are:-
GBV, 78; GIJ, 8,085 ; MIJ, 7,447; GDI, 7,780 ; GAH, 8,065 ; GPN, 8,827; MIK 9,725; GLH, 10,650 ; GPX, 11.645 ; GBI, 10,865; GIN, 12,975; GBO, 13,065; GDZ, 13,910; GAV, 14,455; GPF, 16,100; GAG; 17,105; GCF, 10,005; GCV, 19,365 and GIA, $10,640$.

- Sundays excluded.
t Eundays only.

NEW YEAR HONOURS

J. D. Cockcroft, C.B.E., Ph.D., LL.D., M.Sc., F.R.S., director of the Atomic Energy Research Establishment at Didcot; V. Z. de Ferranti, M.C., chairman and managing director of Ferranti, Ltd., and R. Y. Southwell, F.R.S., rector of the Imperial College of Science and Technology, were created Knights Bachelor in the New Year Honours.

Among those appointed Officers of the Order of the British Empire (O.B.E) in the New Year Honours were: C. G. Phillips, for services as assistant director of telecommunications at the Ministry of Civil Aviation, and F. J. Toone, managing director of Parmeko, Ltd.
A. E. Adams, chief designer of Scophony, Ltd.; L. I. Farren, technical assistant in the G.E.C. Research Laboratory, Wembley: S. B., Gwynn, divisional engineer (wireless), Burma, and H. Wolfson, senior research chemist in the Valve Research Laboratory of Standard Telephones and Cables, were appointed M.B.E.s.
H. Widbourne, lately foreman of workshops at T.R.E., has been awarded the British Empire Medal.

PERSONALITIES

Air Cdre. C. P. Brown, C.B., C.B.E., D.F.C., is relinquishing his Air Ministry post of Director of Operational Requirements (E) to become Chief Signals Officer, R.A.F. Mediterranean and Middle East Command. He was Director of Radar at the Air Ministry from 1942 to 1946.
R. G. Clark, M.I.E.E., who as been manager of the engineering department of the Ferguson Kadio Corporation since Juty, 1946, has been appointed a director. He was formerly head of the research and development department of Philips Lamps.
W. H. Date, B.Sc., A.M.I.E.E., has been appointed head of the Elecirical Engineering Department of the Polytechnic, Regent Street, London, W.I. on the retirement of Philip Kemp. He was formerly senior assistant in the department.
J. V. Holman, managing director of Philco, has been elected a deputy chairman of the Joint Air Transport Committee of the London Chamber of Commerce.
C. L. G. Fairfield, M.A., A.M.I.E.E. who has joined the Mullard Wireless Service Co., will act as assistant to the directors in a technical capacity. He will be concerned with the applications of Mullard research and develop. ment work to industrial problems.
E. S. McCallister has been appointed to the electro-medical department of Philips Electrical, Ltd. IHe was previously in the instrument section of Mullards.
A. McVie, director of Kolster-Brandes and Standard Telephones and Cables, has retired from the chairmanship of the British Radio Equipment Manufacturers' Association.
O. S. Puckie, formerly chief engineer of Sobell Industries, has joined E.M.I. Developments.

Vincent de Ferranti, M.C., who is created a Knight Bachelor.

Andrew Reid, who handled the Press arrangements for the 1947 National Radio Exhibition at Olympia, has been appointed Press Officer to the Radio Industry Council. He will work from his own office at XI, Garrick

Strcet, London, W.C. 2 (Tel.: Temple Bar 3901/2).
D. Robinson has been appointed sales manager of the Amplifier Department of Philips. He was the first chairman of the Institute of Public Address Engineers and was, before the war, joint managing director of Grampian Reproducers, Ltd

WHAT THEY SAY

Pre-eminence of Radio.-" I believe that radio equipmrent is already more continuousty available and serviceable than the celestial bodies which are so readily obscured by haze, mist or cloud and of which the sun alone is conveniently available, if at all, for davlight observation. Consequently I believe that the radio aids as a group are no longer secondary to classical celestial navigation, and that they are now the primary aids, a first eleven with celestial methods relegated to the second and reserve teans." -Sir Robert Watson-Watt broadcasting on "Twen-ticth-Century Aids to Navigation.

IN BRIEF

A.S.E. now A.S.R.E.-The Admiralty Signal Establishment, which, with branches at Haslemere and Whitley, is the largest of the Admiralty research organizations, has changed its name to the Admiralty Signal and Radar Establishment. The work of the establishment now touches upon all aspects of Naval warfare, including communications, naval aviation and modern weapons of diverse types.

Television Licences.-In the six months ended in November the number of television licences issued in this country had risen by 12.5×5, which is an increase of 66.8 per cent on the May figure of 18,735 . The latest figure is 31,250 . The number of broadcast receiving licences (including television) in force in Great I3ritain and Northern Ireland at the end of November was approximately $10,992,200$.

Physical Society's Exhibition.-The 32 nd annual exhibition of scientific instruments and apparatus, organized by the Physical Society, will be held in the Physics and Chemistry Departments of Imperial College, South Kensington, London, S.W. from April 6th-9th. Admission will be by ticket obtainable from the Society. On the opening day the hours of admission will be from 2.0 to 9.0 and on subsequent days from 10.0 to 1.0 and from 2.0 to 8.0.

Mullard's Educational Service, which is at the disposal of technical colleges, training centres, radio societies, etc., was featured by the company in its exhibit at the Science Masters' Exhibition held recently in Sheffeld. The service is especially intended for users of film-strip projectors and includes a series of lectures under the general title "The Radio Valve." The Unicorn Head Film Strip Library, British Industrial Films, Chenil Galleries, 18.3 . King's Road, Chelsea, London, S.IV.3., distribute's the lectures which, with the film strip of approximately 50 illustrations, cost ros each.

Empire Radio School.-A liaison team from the R.A.F. Empire Radio School at Debden, Essex, is to visit Australasia in a Lincoln aircraft, "Mercury II," fitted with the latest types of radio equipment for demonstration to units of the Australian and New Zealand Air Forces. Among the gear with which the aircraft is equipped is the G.E.C. radio compass, Rebecca Mk IV-a miniaturized version of Mk II, which is also carried, Gee, Loran, $\mathrm{H}_{2} \mathrm{~S}$ and V.H.F. communication sets TRII 4.3 A and TR5043.

Continental Television.-The Dutch secretariat of the Continental Television Society, the object of which is the promotion of television in Belgium, France, Luxembourg and Holland, is appealing for technical literature. The address of the Society is Kerksingel 69 , Overschic, Rotterdam, Holland.

German Production.-The manufacture of civilian broadcast receivers has been resumed by a number of oldestablished firms in Germany. Most of the receivers are of comparatively simple type and vary in price from 235 to 540 marks. Among the well-known pre-war names appearing on the new sets are Tekefunken, Loewe, Blue Spot, and Lorenz.
R.S.G.B. Membership.-The annual report of the R.S.G.B. records that during the year 2,997 new members joined the society. Of the total membership of 13,870 at the end of September, $5 \nmid 6$ corporate members resided overseas.

Television Film.-Special film recording equipment was developed and manufactured by Pamphonic Reproducers for making the B.B.C. film of the Royal Wedding. The film was made by photographing the image on a television screen at Alexandra Palace. The equipment, comprising apparatus for camera control and sound recording with automatic volume compression was developed within three weeks.
Electrical Trades Union.-The Radio Technical Advisory Committee of the E.T.U. has arranged a series of meetings in London for the radio workers it numbers among its members. Details of the first two meetings are given in the meetings section on page 56. The meetings are not confined to members of the Union. The full list of fixtures is obtainable from the Area Office, 324, Gray's Inn Road, London, W.C.I.

French Components Exhibition.The French Radio Industry Council announces that its annual exhibition of components, accessories and measuring instruments will be held from February zad to 7 th at the Parc des Expositions de la Porte de Versailles, Paris, 15°. The full title and address of the French R.I.C. is Syndicat National des Industries Radioélectriques, 25, Rue de la Pépinière, Paris, 80.

A Valuable Index.-The annual index to Abstracts and References Dublished in our sister journal Wireless Engineer during 1947 will be available after February gth, from our Publisher. It includes an author index and a classified subject index. As supplies are limited early application for copies is advised. The price is $256 \mathbf{d}$ (by post 2 s 8 d).

INDUSTRIAL NEWS

E.M.I. has purchased from Radio and Television Trust, Ltd., its Perivale factory, which is some three miles from the main factory of the E.M.I. group at Hayes, Middlesex. These two factories, together with that at Treorchy, South Wales, will be operated largely to increase the company's exports

Philco and Airmec. - The factory referred to above has been disposed of by Radio and Television Trust. Ltd., owing to the need for reducing the company's manufacturing organization on account of the drastic cuts in the quota of receivers for the home market Airmec, Ltd., is the manufacturing side of the company and produces Philco sets for the home market, which are sold through Philco Radio and Television Corp. of Great Britain, and Airmec sets for export through Airmec International Sales, Ltd.
Philips Electrical Industries, Ltd., is the name of a private company formed to acquire and hold certain shares of the Philips group of companies in this country. This internal reorganization of the company " has no external implications.

Radio Equipment, Ltd., has been formed as a Holding Company to acquire ninety per cent of the shares in the Mullard Wircless Service Co.

Components Exhibition.-The Radio Component Manufacturers ${ }^{\circ}$ Federation, which is organizing the fifth annual private exhibition of British radio, television and electronic components and test gear, announces that stands have been allotted to roo exhibitors. The exhibition, which will be held at Grosvenor House, Park Lane, London, VV.1, from March 2nd-tth, will be open from 10.0 a.m. to 6.0 p.m. to holders of invitation tickets. It will not be open to the general public.

Belling-Lee.-The twenty-firth anniversary of the founding of Belling and Lee, Ltd., was celebrated with a dinner in London on December 22nd to which friends and supporters of the company were invited.
R.S. Amplifiers, Ltd., of Revnolds Road, Acton Lane, London, W.4. has been acquired by Henri Selmer and Co., Ltcl., of Ir4-ri6. Charing Cross Road, London, W.C. 2 (Tel.: Temple Bar 0444), to whom all enquiries regarding R.S. equipment should now be sent.
Mullard has opened another " feeder" factory at Hove. Sussex. It is for the assembly of sub-miniature valves, including those used in the Governmentsponsored "Medresco" hearing aicl.
Rola-Celestion.-The Board of British Rola has been enlarged to include W. H. Page and S. I. Tyrrell, directors of Celestion. At the same time C. R. Nortcliffe, sales director of Rola, joins the Board of Celestion. Mr. Tyrrell will co-ordinate the research and technical development of the two companies.

Marconi's announce that the $1.300,000$

 order placed by the Chinese Government twelve months ago is now readv for shipment. The contract included sixteen telegraph/telephone transmit-World of Wireless-
ters, thirty triple diversity receiving equipments and 1.50 commercial receivers.

Radio Industries Ball.-The success of the Ball held at the Royal Albert Hall on October ard has prompted the Radio Industries Club to decide to make it an annual event.
O. Greenlick, Ltd., of 34, Bancroft Rond, Cambridge Heath Road, London, F.1, has moved to 265 . Whitechapel Road, E.i.
S. G. Brown, Ltd., of Victoria Road, North Acton, London, W.3. ask us to say that the price of the moving-coil headphones advertised in the December issue was incorrect and should have been $\{55 \mathrm{~s}$.

CLUBS

Birmingham.-High-frequency heating will be discussed and demonstrated at the mecting of the Slade Radio Society on February 6th by IV. D. Wilkinson, B.Sc., of the G.E.C. Development Laboratory. Mectings are held at 8.0 on alternate Fridays at the Parochial Hall, Broomfield Road, Slade Road, Erdington. Sec.: C. N. Smart, 110, Woolmure Road, Erdington, Birmingham, 23. Warwick.
Bovingdon.-An Amateur Radio Section of the Bovingdon Airport Club has been formed but is not cunfined to members of the airport staff. It therefore serves the Bovingdon, Chesham, Hemel Hempstead, and Berkhamsted areas of Hertfordshire. Meetings are held on Wednesdays at 7.30 in Building 161. B. N. Maclarty deputy engineer-in-chief of Marconi's, who until recently was head of the B.B.C. Design and Installation Dept., will talk on high-powered B.B.C. transmitters at the meeting on February 4th. Sec.: J. D. Lord, Pulice Station, Bovingdon, Hemel Hempstead, Herts.
Brighton.-Dr. D. G. Tucker will lecture on the Synchrodyne receiver at the meeting of the Brighton and Hove Group of the R.S.G.B. at the Golden Cross Hotel, Western Road, Brighton, at 7.30 on February 23 rd.

Ilford.-Demonstrations of the Goodmans' infinite baffle speaker and the G.E.C. tape recorder will be given to members of the Ilford and District Radio Society on January 29th and February 19th respectively. Meetings are held on Thursdays at 8.0 at St. Alban's Church Room, Albert Road, Ilford. Sec.: C. E. Largen, 44, Trelawney Road, Barkingside, Essex.

Oxford. The Oxford and District Amateur Radio Society has been reformed and now meets on the first and third Wednesdays of the month at 7.30 at the Club Room. "Magdalen Arms," Iffey Road, Oxford. Sec.: H. Worsfold, 143, Iffey Road, Oxford.

Worthing.-The February meeting of the Worthing and District Group of the R.S.G.B. will be held on the fifth at Oliver's Café, Southfarm Road, Worthing, at 7,30 . The Ministry of Supply fim "K.D.F. to Ridar" and some R.S.G.B. fims, including that of the Atlantic City Conference, will be shown. Sec.: G. W. Morton, 42, Southfarm Road, Worthing, Sussex.

MEETINGS

Institution of Electrical Engineers Kudio Section.- I he $-1 p 1$. cation of Irequency Modulation to V.H.F Multi-Chammel kadiotelephony," by J. H. H. Merriman, M.Sc., and R. W White, B.Sc., on February 4th.

Maintenance of Television Re ccivers in the Home," discussion, opener G. H. Watson, on February roth Buth these meetings will be heid at Savoy Place, London, W.C.2, at 5.30 . Faraday Lecture. -' Electricity and Everyman," by Dr. P. Dunsheuth, C.B.E., Mi.A., on February 27th, at 6.30 , at the Central Hall, Westminster This is a public meeting.

East Midland Centre. - " Speech Communication under Conditions of Deafness or Loud Noise," by Dr. W. G. Radley, C.B.E., on February loth, at 6.30, at the Gas Department Lecture Theatre, Nottingham. Sec.: G. Smith, Loughborough College, Loughborough. Cambriage Radio Group. - "The Cavity Magnetron,"' by Drs. H. A. H. Boot and J. T. Randall, F.K.S., on February 3rd, at 8.15, at the Cavendish Laboratory.

Mersey and North Wales Centre. "The Design of High-lidelity Disc Recording Equipment," by H. Davies, M.Eng., on February toth, at 6.30, at the Royal Institution, Colquitt Street, Liverpool. Sec.: A. V. Milton, 12, Bevington Hill, Liverpool.
North-Eustern Ceutre. - Dr. Dunsheath's Faraday Lecture (see above), on February 18th, at 6.15 , in the Lecture Theatre, Literary and Philosophical Society, Newcastle-on-Tyne. Sec.: E. C. Rippon, c/o C. A. Parsons and Co.. Ltd., Heaton Works, New-castle-on-Tyne, 6.

North-Eastern Radio Group. - Dr. Radley's paper (see East Midland Centre) on February 16 th, at 6.15, at King's College, Newcastle-on-Tyne.
North Western Radio Group."Some Wartime Developments in Electronic Circuit Technique," by Prof. F. C. Williams, (J.B.E., D.Sc., D.Phil., on February 25th, at 0.30 , at the Engineers' Club, Albert Square, Manchester

Western Centre.Dr. Dunsheath's Faraday Lecture (see above) on February 10th, at 6.0, at the ReardonSmith Lecture Theatre, Cardiff. Sec.: L. Burdes, B.Sc. (Eng.), Flectricity Dept., Dorset House, The Promenade, Clifton, Bristol, 8.

Irish Branch.-" Propagation Problems in connection with Short-Wave Broadcasting," by W. Jones, M.Sc. on February j9th, at 6.0, at Trinity College, Dublin. Sec.: R. N. Eaton, 1, Foster Place, Dublin.

Mersey and North Wales Students' Section.-"The Engintering Aspects of Gramophone Record Reproduction," by R. G. Whitehead, B.Sc (Hons.), H. K. Barker, B.Sc., and H. P. Caldecott, B.Sc., on February 7th, at 2.30 at the Royal Institution, Colquitt Street, Liverpool.

> British Institution of Radio Engineers London Section.-"A Multi-Carrier V.H.F. Police Radio Scheme," by J. R. Brinkley, on February 12th, at 6.0, at the London School of Hygiene and Tropical. Medicine, Keppel Street (Gower Street), London, W.C.I.

> Midlands Section.-"Some Aspects
of Moderate Precision Temperature Control in Communication Engineering," by M. P. Johnsun, B.A.Sc., on January 30th, at 6.30 , at the Technical College, The I3utts, Coventry. Sec. C. Stokes, B.:̈c. 6, Esterton Close, Coventry, Warwick.

Merseyside Section.-" Link-Coupled I.F. Circuits Applied to Car Radio Receivers," by R . D. Trigg, on F-ubruary I8th, at 6.45, at the Lecture Room, Liverpool Engineering Suciety, 9, The Temple, 24. Dale Street, Liverpool, 2. Sec.: J. Gledhill, B.Sc., 123, Portelet Road, Liverpool, 13

Norlh-Easiern Section. - Questions Evening on Feebruary isth, at 6.0, at Neville Hall, Westgate Road, New castle-on-Tyne. Sec.: M. A. Board man, 20, l'rinces Avenue, Cosforth.

Norlh-Western Sechon.-"A New All-Stage Valve," by J. A. Sargrove on February 12 th, at 6.45 , at the Col lege of Technology (Reynolds Hall) Sackville Street, Manchester.
B. E. P. Ritson, 38, Farswood Court, East Didsbury, Manchester, 20.

Scoltish Section. - "Supervisory Control," by L. G. Brough, on Feb. ISth, at 6.4.5, at the Institution of Engineers and Shipbuilders in Scotland 39. Elmbank Crescent, Clasgow, C.2. Institution of Electronics

Electronic Ursans," by L. E. A. Bourn, on January 26th at 7.0 in the rooms of the Royal Society of Arts, Juhn Adam Street, London, W.C.2. Sec.: A. H. Hayes, 24, Buckingham Street, London, W.C.2.

North-West Branch.-" The HighVacuum Technique," by Dr. R. IVitty, on February 6th, at 6.30, at the Reynoids Hall, College of Technology, Manchester. Sec.: 1. F. Berry, 105 Birch Avenue, Chadderton, Lancs.

British Sound Recording Association

' Recent Developments in Magneric Recording," by P. T. Hobson, on February 27th at 7.0, at the Roval Society of Arts, John Adam Street, Adelphi, London, W.C.2.

Institution of Mechanical Engineers

" Radio Valve Manufacture," by J. W. Davies, H. W. B. Gardiner, B.Sc.(Eng.), and W. H. C. Gomm, B.Sc.(Eng.), on January 3oth at 5.30, at The Institution, Storey's Gate, St. James's Park, London, S.W.r.

British Kinematograph Society

Newcastle-on-Tyne Section. -" The Film in Relation to Television," by Marcus F. Cooper, on February 3rd, at 10.30 a.m., in the Neville Hall, Neville Street, Newcastle: Sec.: Edward Turner, 30, Ettrick Grove, Sunderland, Co. Durham.

Radio Society of Great Britain

Interference-its Cause, Effects and Cure," by W Hartley, G8UY, on February $13^{\text {th }}$ at 6.30 , at the I.E.E., Savoy Place, London, W.C.2.

Electrical Trades Union

Definitions and Standards of Skill in the Radio Trade," open discussion on January 26th at 7.0 at the Alliance Hall, Caxton Street, London, S.W.I.

Pre-detector Amplifying Systems,' open discussion on February 24th at 7.0 at the Caxton Hall, Victoria Street, London, S.W.I.

The names and addresses of secretaries are included where they have not been given previously in this volume.

Slot Aerials

By D. A. BELL, M.A., B.Sc.

Vertical Polarization from

a Horizontal Radiator

ALOT of the optimistic talk about the benefits to broadcasting and television of radar technique has been unjustified, but the "slot" aerial may prove to be a new line of development which, having started in waveguide technique for radar, will grow upwards from centimetre wavelength to V.H.F. broadcasting, if not lower. As an example, it is reported that the B.B.C. are considering the use of slot aerials for their $90-\mathrm{Mic} / \mathrm{s}$ FAM. transmissions.

At centimetre wavelengths, energy is transmitted more effciently as bounded electromagnetic waves in a waveguide than as currents in a conductor. When we want to radiate the energy which is being carried by a waveguide, we need not put the energy back into current form and then radiate from an aerial, but instead we can radiate electromagnetic wave energy directly, for examale, through a horn.

Now the directivity of any radiator, whether aerial array or horn, is proportional to the dimension (in wavelengths) of the radiator at right angles to the plane in which the directivity is masured. So if we want a beam
which is liable to roll, we must use an aerial such as a one-tier broadside array of radiators (all fed in suitable phase) which is broad but not high.

The connection of a large numbbet of dipoles to a common feeder with correct phasing and impedance matching would be a difficult problem at centimetre wavelengths. But if we punch a row

(a)
of spaced holes in the side of a waveguide, each hole will radiate some of the energy passing down the guide ; and uniform phasing of the radiation from the holes is effected by spacing them correctly along the length of the guide, remembering that the wavelength

Fig. I An array of 'ipoles (a) berrmes iffirt t constru t and feed at c ntimetre wavelengths; but a s' the wave guide (b) gives an equivalent ra action pattern.
which is narrow in the horizontal plane but covers a wide vertical angle, for example, in a ship
inside the guide will be greater than the wavelength in free space. (Fig. I.)

Investigation of the optimum type of radiating "hole" in the waveguide led to the use of a slot of length about half a wavelength and of much smaller width, and from here on we find that study of the radiating properties of the resonant slot leads to re-
suits of much wider interest. First of all, a slot in an infinite sheet is closely equivalent to a flat strip dipole in free space if we consider the shapes of conductor and dielectric to be interchanged, (Fig. 2), except that the slot behaves as a " magnetic dipole." The polar diagram of a slot radiator in an infinite sheet is very similar to that of a dipole in free space, but whereas the electric field is parallel to the length of the dipole, it is the magnetic field that is parallel to the length of the slot. In praclice, of course, the conductor in which the slot is situated is rarely even an approximation to an infinite sheet, and the resulting edge effects may be regarded as a diffraction phenomenon which can slightly improve the polar diagram in favourable cases. If we enclose one side of the slot, preferably with a chamber at least a quarter-wavelength in diameter, the radiation can emerge from one side only; but unless the sheet is of very large extent, there will
still be some backward radiation due to diffraction round the edges of the sheet.

The feed to a dipole is normally inserted in series with the midpoint, and for the resonant length the input impedance is purely re-

(a)
dipole has zero pick-up in the endon direction, while a single vertical dipole receives uniformly from

The examples which have been quoted should be sufficient to show that there are many possibilities of interesting applications.

References

1 " Slot Aerials and Their Relation to Complementary Wire Aerials (Babinet's Principle)," H. G. Booker, J.I.E.E., Vol. 93, Part IIIA, p. 620.
2 "Slot Feeders and Slot Aerials," C. E. G. Bailey, ibidem, p. 6r 5 .
s "Resonant Slots," W. H. Watson, ibidem, p. 747.
${ }^{4}$ F.M. and Television, July, 1947 ; p. 38 .

Appendix

Driving-point Impedance of a Slot. In reference ' above, Booker has shown that if Z_{1} is the impedance of a dipole, and Z_{2} the impedance of
a corresponding slot, then
$Z_{1} Z_{2}=\frac{1}{2} Z^{2}$
where Z is the "characteristic impedance of free space" and is equal to 120 ohms (377 ohms). Hence if the impedance of any type signal and yet have little response in the end-on directions. (At first sight one might hope to get perfect suppression of back radiation by enclosing one side of the slot; but unless the slot is in a very large sheet, the diffraction round the edges may reduce the front/ back ratio to the same order as that of a dipole with reflector or director in the optimum position ; it will also cause some end-on pick-up.) In future, perhaps, blocks of flats will have provision for a television slot aerial to be incorporated in the window frames on the side of the building facing the transmitter, thus providing a good built-in aerial for those on the upper floors, without disturbing the clean lines of the building.

Another possibility is the use of a vertical stack of slots as a vertically polarized analogue of a stack of horizontal dipoles. If 6 narrow slots are fed in parallel (Fig. 4) the resultant impedance will be about $80-90$ ohms, which will match into the conventional types of feeder cable. The main difficulty is the requirement for the surrounding sheet to be considerably larger than the slot dimensions. The sheet might be of wire mesh, and stretched between two masts.

The technique has now been carried a stage further by eliminating the sheet surrounding the slot and leaving only a narrow loop of conductor corresponding to the edge of the slot. ${ }^{4}$
all directions in the horizontal plane. By replacing the vertical dipole by a horizontal slot, we can receive a vertically polarized

Fig. 4. Suggested stack of slots to give directional gain in the vertical plane with vertically polarized radiation.
of dipole system is already known, the impedance of the corresponding slot system is immediately obtainable from the relation

$$
Z_{2}=\$ Z^{2} / Z_{1} .
$$

Providing technical information, service and advice in relation to our products and the suppression of electrical interference

Window Mounting Aerials
We have been examining some official statistics showing that of all complaints of interference reported by the public to the Post Office Engineering Department, a very large proportion can be attributed to the set user trying to do without any aerial, or at least a wire round the room.

Keaders of this journal know that a good outside aerial is necessary in order to obtain a reasonable signal to noise ratio. They also know that their advice is often ignored owing to expense, trouble and difficulty of erection. All these objections can be met by the recommendation of a "Vinrod "* r window mounting aerial. The cost is low, under a pound and deliveries are ex-stock. We all know it cannot be said to take the place of a normal aerial such as we would like to see erected, but it is an out-door aerial that can be fitted at window-sill level, and as such, the signal to noise ratio must be many times better (very often 20 db .). Its more general use would add greatly to the enjoyment of radio reception and would have the effect of giving new life to an old set.

Where there is really serious interference then a full blooded anti-interference aerial such as the
Eliminoise "*2 and "Skyrod "*3 would have to be considered.

Suppression of Interference

Although regular readers of the Wireless World" do not require
to be reminded of the fact, the general public should remember that no acrial suppresses interference ; it may, if correctly chosen and erected with skill, enable the listener to pick up programmes without interference, but the interference has not been suppressed.

With a "Winrod" or other aerials, thains borne-interference may be present. This can be dealt with by the use of a "Belling-Lee" set lead suppressor L. $300 / 3^{*} 4$ which is normally fitted at the plug point supplying the receiver, and ensures that the mains lead going to the receiver is free of interference. This is important as at no other time do the mains come so close to the set. An alternative arrangement is to fit a "Belling-Lee" L.ini8/CT*5 to the incoming mains of the house, but this may be rendered ineffective in a terraced house or flats by reradiation through the walls, of interference from neighbouring wiring. It would also be ineffective if the interference is caused by faulty switches or wiring inside the house.

Midland Television Service

At the time of writing it occurs to us that information of the vision and sound frequencies of the Birmingham television station (Sutton Coldfield) may be released before this goes to press. Experience in the London area has shown that there would be a rush by members of the public to have aerials erected, and certainly wide-awake dealers will be anxious to announce to passers-by , that they are in fact television minded. We have put ourselves in the position that within a few days of the release of the vital information, Belling \& Lee Ltd. will be able to despatch aerials. We have in fact many orders already on our books.

If rumours are to be believed, the service area will be very great and the potential market enormous.

Belling-Lee Service

Most wireless dealers will be glad to give service on Belling-Lee products. To assist both the dealer and the public, we are issuing window cards to dealers so that it is clear to prospective customers that willing and knowledgeable service is available within. Every dealer
cannot know all the answers, but they are supported by an efficient specialist service department who are here to give prompt attention to their queries.

If th is comes to the notice of any dealer who has not yet had a card, and who is interested. will he please get in touch with us giving the name of his pref erred wholesaler.

* 1 " WINROD " (Regd. trade mark) 8 feet, 3 section, window mounting aerial.
L581 Price each 19s. 6d. Supplied EX-STOCK in cartons eacl containing 6 " WVINRODS.'
*2 "ELIMINOISE" (Regd. trade mark) anti-interference transformers for attachment to "Skyrod" vertical aerial or a 6oft. horizontal aerial.
L308 Pair of transformers with receiver connecting lead L621/5.

Price $£ 410 \mathrm{~s}$. Od.
L308/K Complete kit with L1221 screened downlead, aerial and earth wire, and insulators. FO: fitting horizontally.

Price 56 6s. Od.
*3 " SKYROD " (Regd. trade mark) vertical aerial in 3 sections for chimney mounting.
L5 18 Collector only. Price £4 4s. Od. L618 Complete kit with " Eliminoise " matching transformers, L1221 Screened feeder, earth wire and insulator. Price \&10 0s. Od.
*4 Set lead suppressor L300/3
Price $\mathbf{1 2} \mathbf{1 9 s}$. 6d.
*5 Capacitor suppressor, centre tapped, for fitting at the meter board or at the source.
L1118/CT Price £17s. 6d.

E.M.I. basic training fits you for entry to Careers in such fields

TThe Correspondence and College Courses provided by E.M.I. Institutes which cover recognised diplomas such as the City and Guilds, etc. are written and supervised by E.M.I. \star scientists who are. specialists in Electronic Science.
Courses are already available in such subjects as Basic Radio, Basic Television, etc., and the prospectus is being constantly extended.
With this basic training you can eventually become a specialist in Television, Radio Communications, Radar, Navigational Aids, Audio Frequency, Medical and various Electronic applications. There are also short courses for Executives, Amateurs, Students, etc.

For full details apply to your local "H.M.V." Radio dealer or direct to :-
The Principal: Professor H. F. TREWMAN, M.A. (Cantab), M.I.E.E., M.I.Mech.E., M.Brit.I.R.E. E.M.I. INSTITUTES LTD

Dept. 16, 43, Grove Park Road, Chiswick, London, W. 4 * The E.M.I. Group includes "H.M.V.", Marconiphone and other important electronic interests

Proprietors. THE GENERAL ELECTRIC CO. LTD. England.

Coil-pack Modification
 fore, the Home Service is peaked

Two-station Switch Selection with Variable Short-wave Tuning

By L. MILLER

THE need occasionally arises for designing a "compromise" broadcast receiver; that is, a set with switch tuning for the local stations, plus a good normal performance for short-wave reception.

By a simple modification of the present-day widely used " tuning pack," these requirements are easily satisfied, the method used and described here by the writer having the advantage that no additional switching is necessary.

The experiments carried out were on a standard "Weymouth " two-circuit coil pack, and the values given apply specifically to that company's product, but the principle can easily be adapted, with a little experimentation in capacitor values, for other makes of tuning packs.

Modification Details. - The medium-wave band is fixed-
total capacity of some 220 pF , the inductance of the medium-wave with the trimmer nearly fully screwed home. A further ryo-pF fixed capacitor is, of course, wired across the medium-wave oscillator coil trimmer.

The Light Programme is picked up on the long-wave band, and a total capacity of 320 pF is re-

coil being 153 microhenrys. Allowing for 20 pF due to stray capacities, a fixed capacitor of 150 pF is wired across the medium-wave trimmer, whicli

Fig. 2. Modification of the tuning assembly, as seen from wiring side.
quired to peak the 2,000 -microhenry long-wave coil to $200 \mathrm{kc} / \mathrm{s}$.

tuned to the Home Service on $877 \mathrm{kc} / \mathrm{s}$, which, in the case of the Weymouth pack, requires a
tunes from 15 to 65 pF . When the wave-change switch is set at the medium-wave position, there-

Still assuming 20 pF for strays, fixed capacitors of 250 pF are wired across the long-wave

The new camera in use.
to such an extent that great depth of focus can be obtained in
the picture. Since shading signals are entirely absent the camera can be turned from one scene to another without the picture being upset by these troublesome effects, which can be very irritating even when the equipment is under expert control.

The C.P.S. Emitron will enable a great saving in the electric power required to illuminate indoor scenes as well as improving the comfort of the actors, and outdoor broadcasts will be possible until dusk. Indeed, the camera will go on producing a satisfactory picture until failing light stops play in most games.

Manufacturers' Products

Checking Electricity Consumption

A^{N}N electronic kilo-volt-ampore meter, designed to give large industrial consumers a warning when the rate of consumption of electricity exceeds a predetermined amount has been introduced by Everett, Edgcumbe \& Co.. Ltd., Colindale Works, Hendon, London, N.W. 9

It operates on the basis of comparing the time taken to charge a capacitor through a resistance, in one case from a voltage generated by the total factory load and in another by a voltage generated in the instrument and which is the ' reference.
The instrument integrates the relative time taken to charge the condensers over periods of about five minutes and if the load circuit exceeds the rate of charge of the reference it actuates a relay which can be wired into a local alarm circuit or repeated to any distant part of the factory.

Aerial Connector

THE Burgoyne aerial connector provides means for making a watertight connection between a coaxial or low-impedance balanced pair, feeder and an aerial of the dipole or other resonant type, for which wire or cage elements are employed.
It consists of a massive aluminium casting, the two halves of which are held together by 16 nuts and bolts and weatherproofed by applying a sealing compound to the joints.
Large eye-bolts fitted with ceramic bushes serve as anchorages for the aerial on the outside and the feeder on the inside, soldering tags being
included to give good electrical connections. Rubber and fibre washers make watertight seatings for these bushes.

With co-axial feeders and the centre conductor and sheath joined direct to the two parts of the aerial an unbalanced system results, but this is often used quite successfully for both transmission and reception on the short waves.

The connector appears a little heavy for the purpose, weighing as it does $14 \frac{1}{2} 0 z$ without the feeder. In the case of a 40 -metre doublet it would probably be suspended in the centre of a 66 -foot stretch of wire. However, there is a $\frac{1}{4}$ in hole in the top rib for an anchorage wire if facilities allow.

The Burgoyne connector is distributed by Mail Order Supply Co., 24, New Road, London, E.Y, and
the price is $24 / 6$ complete with sealing compound and full assembly instructions.

Television Pre-amplifier

AT the limit of the television service area greater amplification than that provided in the average receiver is sometimes needed and is conveniently obtained from a preamplifier. The type TAB, produced by Clive Courtenay \& Co., of 5 . Horsham Road, Dorking. Surrey, has two R.F. stages using $\mathrm{SP}_{4 \mathrm{I}}$ valves. It is designed for $80-\Omega$ input and output impedances and gives a gain of 30 db for a bandwidth of $7 \mathrm{Mc} / \mathrm{s}$ ($4 \mathrm{I}-48 \mathrm{Mc} / \mathrm{s}$) so that it covers both sound and vision channels.

Designed for use with coaxial feeders it is easily connected between the aerial feeder and the receiver. It has its own internal power supply unit and is in a steel case measuring $7 \frac{1}{3} \mathrm{in}$ by $5 \frac{1}{\frac{1}{2} \mathrm{in}}$ by 2 f in. There is a gain control operating by grid bias, compensated for input capacitance cbanges, on the first R.F. stage. The two valves are coupled by a band-pass filter and there are input and output transformers matching the valves to 80Ω

A padder unit designed for use in conjunction with the pre-amplifier is also available. This is a resistance network of $80-\Omega$ input impedance providing three outputs each at 80Ω. There is a loss of some 16 db between the input and each output, so that with the pre-amplifier the overall gain to each output becomes about 14 db . It measures It in by $5 \frac{1}{3}$ in by $\mathrm{I} \frac{1}{2}$ in and enables three receivers to be used on a common aerial without interaction.
Books issued in conjunction with "Wireless World"

Push-pull Input Circuits

Part 2.-Cathode-follower Phase-splitter

By W. T. COCKING, M.I.E.E.

ONE of the most widely used phase-splitters has the form of a cathode-follower, but with a coupling resistance in the anode as well as in the cathode circuit. It is by no means new and it preceded the cathodefollower as such, probably in time, and certainly in popularity. The earliest reference ${ }^{1}$ to it which the writer has been able to trace is October 1935.

In basic form the circuit is the same as that of Fig. 7 (Part I), but with the input voltage applied between grid and earth instead of between grid and cathode. It is shown in Fig. 9 in its commonest form. It has the very desirable feature that the input and both output voltages all have one common earth terminal, so that it can readily beused after a circuit which has one of its output terminals earthy. The input voltage is E_{AB} and the outputs are $E_{3:}$ and E_{12}.

If the bias resistor R_{b} in Fig. 9 (a) is considered as short-circuited to alternating currents it is obvious that the input voltage E_{AB} must be equal to the sum of the gridcathode voltage $e_{o c}$ and the cathode output voltage $\mathrm{E}_{3 \text { :. }}$. With resistive circuit elements it is also obvious that all these voltages are in the same phase. Therefore, $E_{3:}$ must always be less than the input voltage by the amount of the grid-cathode voltage. The "amplification " $\mathrm{A}_{c}=\mathrm{E}_{3} \cdot / \mathrm{E}_{\mathrm{AB}}$ is thus always less than unity.
With the unearthed input circuit of Fig. 7 an amplification of ro-20 times is possible, but when one input terminal is earthed the amplification drops to less than unity. This is the price which must be paid for the convenience of the earthy input circuit. There is, however, also a considerable gain in linearity, through the negative feedback provided by R_{c}.

It is obvious that the circuit of Fig. 9 suffers from the same defect as that of Fig. 7 at low frequencies, which is that the
output at the anode tends to increase relative to the output at the cathode because of the rising impedance of C_{d}, the decoupling capacitor. By analogy with Fig. 7 one would expect to obtain equality of the outputs at other frequencies when $R_{a}=R_{c}$ and this is actually the relation usually adopted in practice.

However, strictly speaking, this does not equalize the outputs, for the anode current of the valve is not the only current through R_{a} and R_{c}. There is a current through the grid leak R_{g} which flows through R_{c} and increases the cathode output. At high frequencies there are also currents through the grid-cathode and grid-anode capacitances $\mathrm{C}_{g c}$ and $\mathrm{C}_{g r}$. These currents are not in phase with the anode current and

(a)
all have a negligible effect, the equivalent circuit has the form of Fig. 9 (b). The usual expression for the amplification is given by Eqn. (I) in Appendix II and it shows the cathode and anode outputs as being equal when $\mathrm{R}_{a}=\mathrm{R}_{c}$. It is accurate only when the frequency is such that the capacitances exercise a negligible effect and when R_{σ} is infinitely large. This last condition is approached very closely in practice if R_{g} is returned to a potential divider across the H.T. supply instead of to the cathode circuit. This is shown in Fig. Io and in using Eqn. (I) for this circuit we write $\mathrm{R}_{b}=0$, since there is no point in providing a bias resistor when the bias is otherwise obtained.

Although it is the better from this point of view the circuit of Fig. ro is not often used. It demands more parts than the other and the conditions for correct grid bias are rather more critical.

With cathode bias (Fig. 9) and when $\mathrm{R}_{a}=\mathrm{R}_{c}$, as is usual in practice, Eqn. (2) gives the un-

(b)

Fig. 9. The usual circuit of a cathode-follower type phase-splitter is shown at (a) and the equivalent circuit for low and medium frequencies at (b).
they have the effect of making the anode and cat': ode output voltages unequal in amplitude and of giving them a phase difference which is not equal to the ideal 180°.

Over the middle range of frequencies, where the capacitances
balance in the two outputs; that is, the value of this equation is the fraction by which the cathode exceeds the anode output. It is at once obvious that a pentode is likely to be better than a triode, for the numerator will be
smaller owing to the higher A.C. resistance of the valve, and the denominator may well be somewhat larger.

However, the pentode is inconvenient in this circuit because of the screen supply which must be decoupled to cathode if the valve is not to become effectively a triode. This introduces further possibilities of error at extrcmes of frequency. A triode is, therefore, almost invariably used.

It is usual to make R_{a} and R_{c} equal and about equal to v_{a}, while R_{b} is rarely more than one-tenth of R_{a}. Under these conditions the unbalance is of the order of

Fig. io. A motified form of bias circuit is shown here.
$5 / g_{m} R_{g}$. Now R_{g} can be as high as $2 \mathrm{M} \Omega$ in most cases and g_{m} will rarely be less than $2 \mathrm{~mA} / \mathrm{V}$. Under these conditions the unbalance will be 0.125 per cent. In no practical case is the unbalance from this cause likely greatly to exceed this figure, so that it can nearly always be ignored. It is likely to reach practical importance only when R_{g} is below about roo $\mathrm{k} \Omega$.

At high frequencies the equivalent circuit has the form shown in Fig. II, ignoring the anodecathode capacitance of the valve. If the current i_{1} through R_{g} can also be ignored, and it has been indicated above that this usually is permissible, the unbalance is given by Eqn. (4) of Appendix II. The expression is in two parts one with and one without the operator j attached to it. The part without j indicates a differ-
ence of amplitude between the anode and cathode outputs, the voltages so compared being correctly in opposite phase. Such an error can be corrected by a subsequent balance adjustment except in so far as its frequencydependent term is concerned.

The part prefixed by j indicates the fractional amplitude of a component of one output in phase quadrature with the main output. It cannot readily be corrected in any subsequent circuit.

In a typical practical case we may well have $g_{m}=2 \mathrm{~mA} / \mathrm{V}$, $\mathrm{R}_{a}=\mathrm{R}_{c}=r_{a}=20 \mathrm{k} \Omega$, and $\mathrm{R}_{b}=2 \mathrm{k} \Omega$. If C_{c} $=100 \mathrm{pF}$ and it is unlikely to be higher, and $\mathrm{C}_{g c}=5 \mathrm{pF}$, the phase unbalance at $10 \mathrm{kc} / \mathrm{s}$ is 0.02 per cent. The inphase unbalance is some

Fig. Ir. The circuit equivalent at high frequencies to that of Fig. 9 (a) is given here. The anode-cathode capacitance of the valve can usually be ignored without serious error.
0.2 per cent.

These figures are so small that they are without much practical significance. In spite of the fact that the cathode-follower phasesplitter is inherently unbalanced, the magnitude of the unbalance is so small that for all ordinary purposes in A.F. amplifiers it is quite negligible. Practically speaking, it is necessary only to make R_{a} and R_{c} equal, and also the shunt capacitances C_{a} and C_{c}, and to keep the grid leak of as high a value as possible. The capacitances C_{a} and C_{c} are usually composed mainly of the input capacitances of the two halves of the following push-pull amplifier, and so normally tend to be approximately equal. It is usually unnecessary to equalize them artificially.

As already mentioned the lowfrequency unbalance is the same as with an earlier circuit and is given by Eqns. (7) and (8) Part I. It is almost entirely a phase unbalance and can be made negligible by the use of a large enough value for the decoupling capacitance C_{d}. Under normal conditions it should have a minimum value of $8 \mu \mathrm{~F}$.

The input impedance of the stage is high. It is defined as the ratio of the input voltage E_{AB} to the total current flowing from the input voltage source into the input lead. Referring to Fig.
between 0.85 and 0.95 . If it is $0.9, Z_{i n}=10 R_{0}$, and with the usual $2 \mathrm{M} \Omega$ for R_{g}, the input impedance becomes $20 \mathrm{M} \Omega$.

A similar effect occurs at high frequencies with $\mathrm{C}_{g c}$ as long as $E_{A B}$ and E_{32} are nearly in phase. As A_{c} approaches unity, the cathode-earth voltage approaches the grid-earth voltage in value, and the difference between them, which is the grid-cathode voltage, is small, so that the current is small and the effective input capacitance from the element becomes very small and tends to zero.

The effect of the grid-anode capacitance is increased, however. In the limiting case when $\mathrm{A}_{a}=\mathbf{I}$, if $E_{A B}$ and E_{21} are in phase, the voltage acting to drive the current i_{3} through $C_{g a}$ is $E_{A B}+E_{21}=$ ${ }_{2} \mathrm{E}_{\mathrm{AB}}$, and then the effective input capacitance is $2 \mathrm{C}_{a}$

With normal values of components and over the audiofrequency range it is sufficiently accurate for most ordinary purposes to take the input impedance as comprising a resistance ro R_{g} shunted by a capacitance $2 \mathrm{C}_{o a}$. The inequalities of, and phase errors between, the two outputs are negligible, and the amplification A_{c} [given by Eqn. (I] is of the order of 09 .

No mention has so far been made of the output impedance of the stage. That at the cathode tends

Push-pull Input Circuitstowards that of a cathode follower whereas that at the anode conforms to the output impedance of a stage with negative current feedback. The cathode output impedance is much lower than r_{a} whereas the anode output impedance is much higher than r_{a}. In normal applications of the circuit, however, these facts are without much practical significance.
In choosing circuit values it is generally satisfactory to make R_{a} and R_{c} about one to two times the working value of r_{a} and to make R_{g} as high as possible without making it so high that reverse grid current in the valve, or surface leakages on components, become troublesome. Because the input resistance is about ro times R_{g}, the value of the input coupling capacitance
with a coupling resistor of $2 \mathrm{R}_{a}$, the same decoupling resistor R_{d} and bias resistor R_{b}, and the same H.T. supply voltage, but the linearity will be better because of the negative feedback provided by R_{c}. The output referred to above is the total output, $\mathrm{E}_{32}+$ E_{21}.

The exact conditions can readily be calculated by the usual graphical method. The D.C. load line for a resistance $\mathrm{R}_{a}+\mathrm{R}_{b}+\mathrm{R}_{\mathrm{c}}+$ R_{d} is drawn from the H.T. supply voltage on the anode-volts/anodecurrent valve curves and the desired operating point is selected ; the mean anode current I_{a} and anode-cathode voltage $\mathrm{V}_{a c}$ are then known. The A.C. load line for $\mathrm{R}_{a}+\mathrm{R}_{b}+\mathrm{R}_{c}$ is then drawn through the point.

It is convenient to tabulate the anode currents and gridcathode voltages corresponding

Fig. 12. Characteristics of the EF_{37} valve as a triode with load lines $A B$ ($36 \mathrm{k} \Omega$), and EB ($37 \mathrm{k} \Omega$) and a bias line CD ($\mathrm{k} \Omega$).
can be about one-tenth of that appropriate to the value of R_{g} alone.

The decoupling resistor R_{d} should be as high as possible consistent with obtaining the requisite output from the stage, and C_{d} should be large, say $8-16 \mu \mathrm{~F}$. The bias resistor R_{b} must be chosen to suit the valve and its operating conditions, but is usually $\mathrm{r}-2 \mathrm{k} \Omega$.

Turning now to the output available, this is of the same order as that given by the same valve working as a normal amplifier
to the intersections of the line with the valve curves and to convert them to changes of current and voltage about the mean values by deducting these mean values from them. The cathodeearth voltage is then the product of the current changes and $\mathrm{R}_{b}+$ R_{c} while the cathode output voltage is the product with R_{c}. The sum of the grid-cathode voltage changes and the cathodeearth voltage changes give the grid-earth voltage changes, - the input. The dynamic characteristic is the plot of cathode output
against input voltages and is the actual working characteristic taking feedback into account.

This procedure, while easy, takes some little time to carry out and it is helpful, therefore, to have a quick means of roughly estimating the output. With a triode the anode-cathode voltage cannot usually be swung below $25+\mathrm{V}_{c} / 6$ volts (where V_{c} is the voltage across C_{d}) without driving the valve into grid current.

The maximum anode-cathode voltage is usually about the same amount less than the mean voltage across C_{d}; i.e., $\mathrm{V}_{c}-25-\mathrm{V}_{\mathrm{c}} / 6$ volts. The total swing is thus ${ }_{3}^{2} \mathrm{~V}_{c}-50$, and the peak outputs at anode and cathode are each $\left(\frac{2}{3} \mathrm{~V}_{c}-50\right) / 4$. This is a very rough figure, but is useful for an initial estimation of the possibilities. If $\mathrm{V}_{c}=200 \mathrm{~V}$, for instance, an output at anode and cathode of the order of 20 V peak each can be expected. With 300 V the output will be about 37.5 V peak.

The mean anode-cathode voltage is about $\mathrm{V}_{c} / 2$ and the mean anode current about $\mathrm{V}_{\mathrm{c}} / 2$ $\left(2 \mathrm{R}_{a}+\mathrm{R}_{b}\right)$. The mean cathodeearth voltage is about $\frac{V_{c}}{2}$. $\frac{\mathrm{R}_{a}+\mathrm{R}_{b}}{2 \mathrm{R}_{a}+\mathrm{R}_{b}} \approx \frac{\mathrm{~V}_{c}}{4}$. This is important, for with many valves there is a maximum permissible heatercathode voltage and it is usually desirable to earth the heater. In the case of the EF37 valve, for instance, the rating is 100 V . There is also for this valve a maximum figure of $20 \mathrm{k} \Omega$ quoted by the makers for the resistance between heater and cathode, so that $R_{a}+R_{b}$ must not exceed $20 \mathrm{k} \Omega$.

With such a valve therefore, V_{c} is limited to about 400 V and the outputs to about 55 V peak, and the mean anode current will be of the order of 5 mA . This is within the maximum rating of 6 mA .

As an example of the determination of operating conditions and to illustrate the degree of accuracy of this rough method, the dynamic characteristic will now be deduced by the accurate method given earlier. We shall take an EF_{37} valve strapped as a triode. Since $R_{b}+R_{c} \leqslant$ $20 \mathrm{k} \Omega$, we shall take $\mathrm{R}_{a}=\mathrm{R}_{c}=$
$18 \mathrm{k} \Omega$, since this is the nearest preferred value in the 5 per cent and to per cent tolerance ranges. The valve data places a limit of

Fig. 13. Dynamic characteristics of the phase-splitter.
$3 \mathrm{M} \Omega$ on R_{g}, and we can with confidence settle this at once at the standard value of $2.2 \mathrm{M} \Omega$. We shall take V_{c} as 400 V .

The valve curves are shown in Fig. 12. As we do not know R_{b} at this stage we cannot draw the final load line, and we start off by drawing AB for $36 \mathrm{k} \Omega$. It is obvious that the bias should be about -6 V . With an input of 5 V peak, the grid-cathode voltage would swing from - I V to -IIV and grid current should just be avoided. The anode-cathode voltage would swing from ros V to 308 V with a mean value of 220 V . The outputs would be - II5 V and +88 V so that there is considerable distortion. The cathode-earth voltage would be (400-220)/2 $=90 \mathrm{~V}$ and the anode current 5 mA , so that the valve would operate within its rating.

A slightly lower bias would be better, but it cannot be much lower without the rating of the valve being exceeded. It is convenient to use a standard resistor for R_{b}, so let us try ik Ω. We draw the bias resistor line ${ }^{2}$ by joining the intersections of the current ordinates with the grid-volts curves corresponding to the product of the current and the resistance. This is the line CD in Fig. 12. The new load line is now for $37 \mathrm{k} \Omega$ and is $B E$, and the no-signal operating point is the intersection of $C D$ and $B E$ at a current of 5.3 mA . The heater-cathode voltage is $5.3 \times$ $19=100 \mathrm{~V}$. It is just on the rating of the valve and it would be desirable to reduce it some-
what by reducing the H.T. voltage. The grid bias is 5.3 V .

The next step is to tabulate the grid voltages and the corresponding anode currents as in columns I and 2 of the table. Then prepare columns 3 and 4 for the changes of voltage and current, by deducting the nosignal values from columns 1 and 2, and produce column 5 by multiplying the figures of column 4 by the total cathode resistance $\mathrm{R}_{\mathrm{b}}+\mathrm{R}_{\mathrm{c}}=19 \mathrm{k} \Omega$; this gives the change of cathode voltage. The sum of columns 3 and 5 , in 6 , gives the change of input voltage. Finally, column 7 is prepared by multiplying the figures of column 4 by the resistance R_{c} across which the output voltage is developed, in this case by $18 \mathrm{k} \Omega$. The output at the anode is the same but with the signs reversed.

The relation between input and output voltages is shown by the curve of Fig. I3 and it will be seen that this is a straight line within the limits of accuracy imposed by rather small-scale graphical calculations. The maximum input is set by the onset of grid current, and is at a grid-cathode voltage of $-I$, corresponding to a grid-earth potential of +51.8 V , the corresponding output being

45 V . The amplification is $45 / 5$ I $8=0.87$ times.

The output of 45 V peak is somewhat below the figure of
giving a preliminary indication of the output. In this case the output is limited by grid current and this indicates that a somewhat higher value of bias resistor would be better. There are, however, signs in Fig. 13 that the curve is starting to bend beyond - 50 V input and but little increase in bias resistance would be practicable.

A stage such as this will just feed a pair of push-pull PX_{4} valves directly but in view of the high value of $\mathrm{H} . \mathrm{T}$. supply needed there is nothing to spare for decoupling. Fortunately in this case decoupling is usually unnecessary.

The heater-cathode voltage with no signal is some 100 V . the maker's maximum rating. On full output it rises to 145 V peak. It is not clear from the published figures whether this is permissible or not. Since a large heater-cathode voltage is normally used only with a superimposed signal it has probably been taken into account.

It will be seen from this that the conditions are rather tight when the phase-splitter is called on to feed a triode output stage directly and because of this the writer usually prefers to use an intermediate push-pull stage with an amplification of the order of 10 times. The phase splitter is then called on to provide an output of 4.5 volts or so only,

55 V estimated earlier, but the agreement is reasonable since the method of estimation is a very rough one intended only for
and the valve can very easily be operated well within its limits. In conclusion, it must be pointed out that condition of R_{a} and R_{c}

Push-pull Input Circuits-
being equal, which has been assumed in all the foregoing, is one which must be closely observed in practice. It is usually desirable to employ resistors matched within about 2 per cent, but the usual tolerance of ± 20 per cent on actual value is quite satisfactory.

APPENDIX II

Referring to the circuit of Fig. $9(b)$,
$U \approx \frac{i_{z}+i_{s}}{i_{a}} \approx \frac{\left(r_{a}+R_{b}+2 Z_{c}\right)\left(\mathrm{r}+\mathrm{Z}_{\sigma c}\left(Z_{g a}\right)+2 \mu Z_{c} Z_{g c} / Z_{o g}\right.}{\mu Z_{o c}} \quad \cdots$
under the conditions that the reactance of C_{d} is negligibly small,
$\mathrm{U} \approx \frac{2 \omega \mathrm{C}_{g c}}{g_{m}}\left[\mathrm{I}+\frac{\mathrm{R}_{b}}{\gamma_{a}}+\left(g_{m}+\frac{2}{\gamma_{a}}\right) \frac{\mathrm{R}_{c}}{I+\omega^{2} \mathrm{C}_{c}{ }^{2} \mathrm{R}_{c}{ }^{2}}\right]+j \frac{2 \omega \mathrm{C}_{\sigma c}}{g_{m}} \cdot \frac{\omega \mathrm{C}_{c} \mathrm{R}_{c}}{I+\omega^{2} \mathrm{C}_{c}{ }^{2} \mathrm{R}_{c}{ }^{2}}\left(g_{m} \mathrm{R}_{\mathrm{c}}+\frac{2 \mathrm{R}_{c}}{\gamma_{a}}\right)$
that $\mathbf{R}_{g}=\infty$ and that $\mathbf{R}_{\mathrm{a}}=\mathbf{R}_{\theta}$
$A_{c}=\frac{E_{32}}{E_{A B}}=A_{0}=-\frac{E_{13}}{E_{A B}}=$
$\frac{g_{m} R_{0}}{I+\frac{R_{b}+2 R_{s}}{r_{0}}+g_{m}\left(R_{b}+R_{0}\right)}$

Book Review

Klystron Tubes. By A. E. Harrison. Pp. $271+x$: 155 figures and charts. McGraw-Hill Publishing Company, Aldwych House, Aldwych, London, W.C.2. Price 17 s 6 d .

THE word "Klystron" is taken from the Greek, and is derived from the " breaking of waves in the sea," as they do whenever the wind and shallow ground force them to move along bodily. The higher portions on the crest of the wave are then moving faster than the lower portions in the troughs, with the result that the higher portions catch up with the lower ones. This produces a progressively steeper slope of the front of the wave, until finally the wave topples over, disintegrating into foam and spray.

A stream of electrons moving along in one particular direction can be made to behave in a fashion not unlike the above described wave if we superimpose a rapidly alternating velocity on the common uniform velocity of the electrons. Then slower moving groups will be immediately followed by faster moving groups, with the result that the faster ones catch up with the slower ones, eventually, and form what is called a "bunch." The rapidly alternating velocity is impressed on

When $Z_{\sigma \sigma}=Z_{\sigma a}=I / j \omega C_{o c}$ and $\mathbf{Z}_{\mathrm{a}}=\mathrm{Z}_{\mathrm{c}}=\mathrm{K}_{\mathrm{c}} /\left(\mathbf{I}+j \omega \mathrm{C}_{c} \mathrm{R}_{\mathrm{o}}\right)$ this becomes:
where $g_{m}=\mu / r_{a}=$ mutual conductance.

When R_{o} is not infinite and $\mathbf{R}_{a}=$ R_{c}, the unbalance is
$U=\frac{E_{32}-E_{21}}{E_{21}}=\frac{i_{1}}{i_{a}} \approx$

$$
\begin{equation*}
\frac{1+\frac{\mathrm{E}_{21} R_{b}+2 R_{c}^{i_{a}}}{r_{a}}+g_{m} R_{b}}{g_{i} R_{p}} \tag{2}
\end{equation*}
$$

provided that $i_{1}<i_{a}$
At high frequencies the circuit has the form of Fig. II. Assuming that $C_{a c}$ and R_{g} have a negligible elfect, the unbalance is

References

1" Resistance Coupling for PushPull Amplification," by Walther Richter, Electronics, October 1935, Vol. 8, p. 382.
${ }^{2}$ "Self-Bias and the Valve Load Diagram," by W. T. Cocking, Wireless Engineer, December 1934, Vol. 11, p. 655. Klystrons mestrons - not somebody who a bely takes a new Klystron out of a box and plugs it in place when the
old one has failed. The book should also be of interest to those who teach modern radio engineering and who wish to have a solid and authoritative account of the principles and the theory of the Klystron on which to base their teaching. The mathematics employed in the book is of a standard implying familiarity with the elements of differential and integral calculus, and is marshalled with great care and with a view to clarity and simplicity. Though Bessel functions are employed, this should not dismay anyone who has realized that they are merely the cylindrical analogue of the familiar circular functions, to which they are indeed asvmptotic in most cases.

The Klystron in all its ramifications is treated in great detail and many diagrams are given both of theoretical and practical results. A special chapter on power supplies will be very welcome to users who are new to the field, similarly a chapter on microwave measurement techniques. Design charts. a glossary of terms and symbols and a very comprehensive bibliography round off the book which should form a valuable addition to many technical libraries.
R. K.

Books Received

The World Radio and Television Annual.-Edited by Gale Pedrick. Although primarily concerned with programme matter, this annual contains a number of interesting contributions on the broadcasting organizations of various countries. Pp. 192, with many illustrations. Sampson Low, Marston and Co.. 43, Ludgate Hill, London, E.C.4. Price 1256 d .
These You Can Hear--By W. Norman Stevens. Most of the pages in this booklet are devoted to descriptions of overseas broadcasting stations. It also includes a wavelength-frequency conversion chart. Pp. 32, illustrated. Amalgamated Short-Wave Press, Ltd., 57, Maida Vale, Paddington, London, W.9. Price 2s.

Viertually Distortion
 MODEL A.D./47 10-VALVE TRIODE CATHODE FOLLOWER AMPLIFIER

 This is a 10 -valve amplifier for recording and play-back purposes for which we claim an overall distortion of only 0.01 per cent., as measured on a distortion factor meter at middle frequencies for a 10 -watt output. The internal noise and amplitude distortion are thus negligible and the response is flat plus or minus nothing from 50 to $20,000 \mathrm{c}$ /s and a maximum of .5 db down at $20 \mathrm{c} / \mathrm{s}$.A triple-screened input transformer for $7 \frac{1}{2}$ to 15 ohms is provided and the amplifier is push-pull throughout, terminating in cathode-follower triodes with additional feedback. The input needed for 15 watts output is only 0.7 millivolt on microphone and 7 millivolts on gramophone. The output transformer can be switched from 15 ohms to 2,000 ohms, for recording purposes, the measured damping factor being 40 times in each case.
Built-in switched record compensation networks are provided for each listening level on the front panel, together with overload indicator switch, scratch compensation control and fuse. All inputs and outputs are at the rear of the chassis.

Send for full detalls of Amplifer type AD/47

C.P. 20A. 15 watt AMPLIFIER

for 12 volt battery and A.C. Mains operation. This improved version has switch change-over from A.C. to D.C. and " stand by" positions and only consumes $5 \frac{1}{2}$ amperes from 12 volt battery. Fitted mu-metal shielded microphone transformer for 15 ohm microphone, and provision for crystal or moving iron pick-up with tone control for bass and top and outputs for 7.5 and 15 ohms. Complete in steel case with valves.

As illustrated. Price 62800

RECORD REPRODUCER

This is a development of the A.C. 20 amplifier with special attention to low noise level, good response ($30-18,000 \mathrm{cps}$.) and low harmonic distortion (I per cent. at 10 watts). Suitable for any tope of pick-up with switch for record compensation, double negative feedback circuit to minimise distortion generated by speaker. Has fitted plug to supply 6.3 v . 3 amp . L.T. and $300 \mathrm{v} .30 \mathrm{~m} / \mathrm{a}$
 H.T. to a mixer or feeder unit.

Complete in metal cabinet and extra microphone stage. As illustrated. Price $25 \frac{1}{2}$ Gns. CHASSIS, without extra microphone stage. Price 621 .

HERE IS THE WAY TO BETTER SOUND DISTRIBUTION

The Multicellular type of horn has been developed to facilitate quality sound reproduction in auditoria by providing satisfactory distribution of the higher audio frequencies essential for intelligibility. Vitavox Multicell horns are available in two types having lower cut-off frequencies of 220 and 550 c.p.s. respectively and in a wide range of cell combinations to suit particular circumstances.

VITAVOX MULTICELL HORNS

Obtainable from your VITAVOX Dealer but do not hesitate to Consult us in case of difficulty or if you require further details.

Vitavox Limited, Westmoreland Road, London, N.W. 9 Telephone: Colindale 8671-3

Dours Jfaitbfulle...

THIS ADVERTISEMENT FIRST APPEARED DURING MAY, 1946. WE ARE STILL
 SELLING AMPLIFIERS AS A RESULT: THIS IS PARTLY DUE TO THE ADVERTISEMENT, BUT MAINLY DUE TO THE FACT THAT ONE AMPLIFIER "SELLS" SEVERAL MORE-SIMPLY A QUESTION OF HEARING IS BELIEVING.
THE FIRST AMPLIFIER BY SOUND SALES LTD. APPEARED IN 1934, AND THE LATEST SERIES INCLUDES THE 6 WATT, $12 / 14$ WATT, 35 WATT AND 50 WATT MODELS, INCORPORATING ALTERNATIVE TYPES OF TRI-CHANNEL ELECTRONICALLY MIXED TONE CON. TROL UNITS, TOGETHER WITH V.U. OUTPUT METERS IF REQUIRED.

A ENTS Barnes A Avis, Reading; Bowers \& Wilkins Worthing; Binns Led., Newcastle: Dalton Sons, Ltd., Derby: Clark Sons, Isle of Wight: Hickie \& Hickie, Ltd., Reading (and branches): Thomas Lynn Sons, Andover: Merriots Led., Bristol: Needham Engineering Led., Sheffield: Pank's Radio, Norwich; Sound Ltd., Cardiff; Bernhard Smith, Barnstaple: Sound Services, Jorsey, C. I.: Pracision Services, Edinburgh; Seals Ltd., Sourhsea: G. E. Samways, Hazol Grove: Woybridge Radio Electric, Woybridge ; Weat End Radio, Farnham; Vallance \& Davison, Led., Leeds (and branches).

Found Fales wt.

57, St. Martin's Lane, London, W.C. 2 (TEMPLE BAR 4284)
WORKS : Farnham, Surrey. (FARNHAM 6461/2/3)

Commercial Disc Recording

Informal Lecture and Discussion at the I.E.E.

AT a meeting of the Radio Scction of The Institution of Electrical Engineers on 9th December, r947, an informal lecture on "Commercial Disc Recording and Processing" was given by B. F. G. Mittell, M.I.E.E. Mr. Mittell stated that at present commercial conditions appeared to confine the disc record to the speed, diameters and groove spacing which were in common usage.

Commercial records were, perhaps, too tied to their traditional paths, and it was necessary to consider what steps could be taken to adopt improved techniques, consistent with maintaining the continuity requisite to avoid adverse reaction from the buying public. Mr. Mittell then put forward proposals for the standardization of groove and stylus shape and recording characteristics.

Discussion was particularly invited towards a measure of agreement in this country, and an exchange of views elsewhere.

With the aid of lantern slides and exhibits the manufacture of commercial disc records was described, starting with the studio and ending with the finished record

Demonstrations were given of recorded quality and surface noise successively in the original recording, the metal "mother" and the "pressing." Recording up to 20 kc / s was also demonstrated.

The discussion which followed indicated that there was no fundamental disagreement with the proposals for standardization of groove, stylus and recording characteristics put forward by the opener. It was thought that a preliminary committee on which the principal British record producers were represented would have no difficulty in reaching tentative agreement, and that their findings could then form the basis of a British Standard.

Attention was given mainly to recording at 78 r.p.m. and it was pointed out that the proposed

Froposals for standardization of groove, reproducing stylus and recording characteristic put forward by Mr. Mittell.
recording characteristic put forward by the N.A.B. of America was essentially a $33 \frac{1}{3}$ r.p.m. standard; it could not be said to have met so far with universal acceptance even in the United States. Most speakers thought that some degree of preemphasis of high frequencies was desirable with present recording materials, but that the amount proposed by the N.A.B. was excessive and would lead to tracing distortion at the modulation levels usually recorded on commercial discs. A rise of 3 db from $3,000 \mathrm{c} / \mathrm{s}$ to 6,000 c / s and a further 3 db from 6,000 c / s to $12,000 \mathrm{c} / \mathrm{s}$ was suggested as a suitable compromise.

There was general agreement that an extended high-frequency response was worth while, provided that distortion components in both record-
preliminary market research in America seemed to indicate that the public did not yet regard the improvement as worth the extra cost. The absence of abrasive meant that more care would have to be taken to ensure a correctly shaped needle point, and specially designed pickup movements might be needed. owing to the reduced elasticity of the groove wall. It was pointed out that the recording characteristic was intimately bound up with the properties of the record material and that a statement of mechanical impedance limits at the reproducing point should be included in any standardization of frequency characteristic.

Groove wear during playing was discussed and it was stated that sapphire points did not necessarily damage the groove walls. A record which had been played 1,000 times

ing and reproducing systems could be reduced to a satisfactory low level. Even when the response of the reproducer, or of the ear of the listener, was restricted, the subtle improvement resulting from the recording of high, even ultrasonic, frequencies could be detected. It was thought that this might be explained on the basis of improved transient response.

The only justifiration for a rising characteristic, with subsequent correction in the reproducer, was the relative reduction of surface noise. Many speakers thought that the proper approach would be to reduce noise at its source by research into alternative materials for the record.

Vinyl plastics had been given extensive trials as an alternative to standard shellac mixes and had shown considerable promise. They were, however, more expensive, and
by a commercial pick-up with $38-\mathrm{gm}$ vertical weight on the sapphire point was demonstrated by way of proof.

Opinions differed on the expectations of life of sapphire points. Some thought that wear could be detected after 50 playings, others that 2,000 playings could be obtained with a $30-\mathrm{gm}$ pick-up before the width of the flat reached $0.002 i n$. In the absence of the grinding-in process the shape of sapphire and diamond styli was of paramount importance in controlling surface noise.

The development of lightweight pickups and the demand for automatic record changers meant that "permanent" points were essential. Fears of trouble through breakage were largely unfounded. With a cantilever-sprung mounting, giving vertical compliance, sapphire points could be dropped several inches on to a disc without risk of fracture.

What It Is, and How To Use It

By "CATHODE RAY"

IHAVE been asked to do something to clear up the great mystery of the small j-for those to whom it is a mystery. Apart from any mystery that may be considered to attach to mathematics in general, j seems to be surrounded by an aura of special mystery, akin to occultism and spooks. The idea is that $j=\sqrt{ }-\mathrm{I}$, which is obviously incomprehensible, seeing that no number when squared equals - $1 . \quad \sqrt{ }-1$ is openly referred to in sober mathematical works as an "imaginary number "; and when the bewildered student seeks light on this it is explained to him that imaginary quantities (i.e., those in which $\sqrt{ }-\mathbf{I}$ appears as a factor) extend into some other dimension, which does exist but cannot be visualized by the human mind. Here we recall the stories of people who have suddenly and mysteriously disappeared, and the explanation that somehow they have slipped into a fourth dimension which is outside normal human experience or comprehension. At that point the student is tempted to give up.
Well, there is something in all this, but there is no need to let it hinder one from using j for solving A.C. calculations. If it worries you, you can ignore all the $\sqrt{ }-\mathrm{I}$ business. Actually, however, even its unimaginableness may be a help to those, like myself, who are unhappy about any mathematical operations that they cannot visualize.

First let me say that I am not going to attempt a complete treatise on j. There is at least one whole book devoted to it, and extensive parts of many other books; and the Editor has better use for his precious paper supply than republishing at length what can be found elsewhere. Anybody who wants to be able to handle A.C. calculations intelligently and effectively ought to get down to it and study j until its use is quite natural and familiar. There is no other way. I suggest Colebrook's Basic Mathematics for Jadio

Students"; and there are some concise practical notes (Colebrookinspired) in Hague's fine book " Alternating Current Bridge Methods." All I hope to do is to show that j is worth knowing and can be understood by anybody who can cope with elementary algebra and geometry.

What use is j, then ? Students of electricity in general, and of radio in particular, start with D.C., and (unless hopelessly dim) soon find their way about D.C. circuits quite confidently: It is when they tackle A.C. that the trouble begins. It is like trying to

Fig. 1. Simple A.C. circuit to illustrate the meaning of j.
see exactly in what order a trotting horse puts down its feet; they never keep still long enough. Even when one has become accustomed to using fixed numbers for reckoning the strength of something that is rapidly varying all the time, and has grasped the idea of two new sorts of circuit element to add to resistance, there is the difficulty that these new sorts (inductive and capacitive reactances), although reckoned in ohms, cannot just be added to resistive ohms in a straightforward sensible manner.

Take an example of the simplest possible circuit that contains all three (Fig. I). I assume you know all about how to work out the reactances $\left(\mathrm{X}_{\mathrm{L}}=2 \pi f \mathrm{~L}=\omega \mathrm{L}_{\mathrm{c}}\right.$: $\left.\mathrm{X}_{\mathrm{e}}=\mathrm{I} / 2 \pi f \mathrm{C}=\mathrm{I} / \omega \mathrm{C}\right)$. What one generally wants to know in this sort of situation is (a) the strength of current that will flow, and (b) the phase of the current relative to the voltage. If on could just add up all the ohms, $40+35+25=$ 100, apply Ohm's Law, and say the current is 1 amp, everything would be nice and easy, but unfortunately there would be no such thing as radio.

What we are told to do is first to subtract X_{c} from X_{2} to get the total reactance (because the two reactances are opposite, whatever that may mean), and then work out the circuit impedance, Z, from the formula

In this case $X=15 \Omega$, so $\mathrm{Z}=38.1 \Omega$ if I have done my arithmetic correctly, and the current is 2.625 A . The angle of lag, ϕ the proportion of a complete 360° cycle by which the current lags behind the generator voltage - can be calculated from $\tan \phi=\mathrm{X} / \mathrm{R}$ or alternatively (if we have worked out Z), $\cos \phi=\mathrm{R} / \mathrm{Z}$ or $\sin \phi=\mathrm{X} / \mathrm{Z}$. They all come to the same. Here X / R is 0.4285 ; so, looking up a table of tangents, $\phi=23.2^{\circ}$.

Even in such a very simple example, the $\sqrt{\mathrm{R}^{2}+\mathrm{X}^{2}}$ sort of thing is rather a nuisance, because one cannot do it all on a sliderule. The squaring and the squarerooting are all right, but they have to be interrupted in the middle to do the addition. If calculations of this sort have to be done only occasionally, perhaps one can put up with that. But it is very timewasting when there are strings of them, as there may be in working out experimental results or in designing. And this is only the simplest possible case. When it comes to working out complicated circuits, either for particular values as in Fig. I, or generally, by means

Fig. 2. The graphical method of calculating the impedance of the circuit, Fig. 1.
of algebra, and expressions of the $\sqrt{\mathrm{R}^{2}+\mathrm{X}^{2}}$ kind have to be multiplied and divided and otherwise
manipulated, it decidedly becomes what the R.A.F. describes as a bind. And anyway, what lies behind this awkward $\sqrt{\mathrm{R}^{2}+\mathrm{X}^{2}}$?

In the days of our youth I suppose we were all confronted with the celebrated Theorem of Pythagoras, according to which, in a right-angled triangle, the length of the hypotenuse (word the Greeks had for the longest side) is related to the lengths of the other two sides in exactly the same way as the magnitude of the impedance in Fig. I is related to the reactances. So an alternative method of arriving at Z and ϕ is to draw a right-angled triangle with the lengths of its shorter sides representing K
and X to any con-
venient scale (lig.
2). Then the
length of the
third side to the
same scale gives
Z; while ϕ can
be measured with
a protractor.
usually measure
R and X along a
are the instructions to add or subtract (in the graphical representation, to move to right or left), and the number indicates the quantity or distance. The only stipulation is that they must all be the same sort of quantity-all ohms resistance, or all volts, or all potatoes, etc.

Resistance and reactance, although both measured in ohms so that they can both be represented to the same scale in a diagram, just don't add in this way. It is a fact of nature, which can't be changed. They do combine in a certain way to make impedance ; and, as we know, that certain way happens to be the same way as that by which two journeys at right angles, such as $A B$ and $B C$ in Fig. 2. are equal to one journer. AC, so far as distance and clirection from the start are concerned.

We live in and can visualize three dimensions; but suppose there were single-dimension or D.C. creatures that lived in a straight line and were incapable of going outside or even imagining anything else. To them it would be sheer nonsense to say that 35Ω resistance (which they could understand) added to 15Ω of something clse gave 38. i Ω.

If we just said $+35+15$, the carrying out of this operation would be a total movement of 50 units to the right. So it is necessary to have some other symbol of command, or operator, to mean that the 15 units must be in a different direction, i.e., at right angles. A very convenient operative symbol is j. So the instructions for calculating the combined impedance of 35Ω resistance and 15Ω reactance are written very concisely as $35+j 15$. Expressing this generally:-

$$
\mathbf{Z}=\mathbf{R}+j \mathbf{X}
$$

In Fig. I there are two kinds of reactance which are mutually cancelling, so can be expressed as + and - So the more detailed formula is:-

$$
\mathbf{Z}=\mathbf{R}+j\left(\mathbf{X}_{\mathbf{t}}-\mathbf{X}_{\mathrm{c}}\right)
$$

and if the whole thing were done in a diagram it would be as in Fig. 3.

You may have noticed that the \mathbf{Z} was printed in special type. That is the conventional way of showing that it is not just the ordinary algebraical symbol " Z " representing how much there is of

cabinet
Gramophone 614 (RC)
Amplifier TP. 6 incorporate
illustrated) 614 speciall illustrated) incorporates NEW Amplifier T. 614 , specially designed for High fidelicy records. duction of gramophone response.
Variable frequency bass, rreble Variable frequency bass, treble separate co frequencies. Inputs mixing for mic. and gram. With mix with controls. Alternativel' (TP. G14). single record play new TWIN
Also available. for use with Also avalabeaker for use with this mode!. Write for illustroted list of AClOC =wnes. Equipment

THE TRIX ELECTRICAL CO. LTD.
1 S MAPLE PLACE TOTIENMAM COURT ROAD-LONDON, w.

" ${ }^{\text {j." What It Is, and How to Use It- }}$ a certain quantity (to wit, impedance). It is what is called a vector operator, involving direction as well as magnitude. So when you see " $\mathbf{Z}_{1}+\mathbf{Z}_{2}=\mathbf{Z}_{3}$ " it does not mean that if \mathbf{Z}_{1} and \mathbf{Z}_{2} were 100Ω and 150Ω respectively, then Z_{3} would necessarily be 250Ω. They have to be worked out fully in the $\mathrm{R}+j \mathrm{X}$ form.

Now as j is simply an instruction to change direction through one right angle anti-clockwise, two such instructions in succession

must change it through two right angles, which has precisely the same ultimate result as a minus. The obvious shorthand for $j j$ is j^{2}; so the operator j^{2} is equivalent to - and $j^{2} 1=-1 ; j$ is not an algebraical quantity like x or y, but the result of treating it as if it were is $V^{2}=j=\sqrt{ }-1$ is unimaginable, and therefore quite appropriate as a factor to apply to quantities which lie outside the universe of the one-dimensional D.C. people. What is more, treating j as an algebraical quantity does get the sums right. Although quantities with j in them must always be kept strictly separate from those without, the algebra often results in two j quantities being multiplied together, giving a j^{2}. When that happens, it is quite allowableand very convenient-to substitute - I for j^{3}, and so bring the quantity concerned over on to the ordinary rational side of the iron curtain.

I shall give an example of this shortly; but in the meantime it would be as well to be quite clear that all j or up-and-down quantities can be combined together by the usual laws of algebra or
arithmetic (so long as the label " j " is not allowed to come off until it is squared), and of course the same for the non- j quantities. So the impedance of any circuit, however complicated, can be expressed in the general form

$$
\mathbf{Z}=\mathbf{R}+j \mathbf{x}
$$

in which " R " and " X " may stand for more or less elaborate expressions.

The simplest possible case, after Fig. I, is a circuit in which there are two impedances in series. Call them \mathbf{Z}_{1} and \mathbf{Z}_{2}, and their component parts $\mathrm{R}_{2}, \mathrm{X}_{1}, \mathrm{R}_{2}$ and X_{2}. (X_{1} and X_{2} may of course themselves be combinations of positive and negative reactances.) Then the impedance of the whole lot, \mathbf{Z}, is

$$
\begin{aligned}
& \mathbf{Z}=\mathbf{Z}_{1}+\mathbf{Z}_{2}=\left(\mathbf{R}_{1}+j \mathbf{X}_{1}\right) \\
& +\left(\mathbf{R}_{2}+j \mathbf{X}_{2}\right)
\end{aligned}
$$

Sorting these out,
$\mathbf{Z}=\left(\mathbf{R}_{1}+\mathrm{R}_{2}\right)+j\left(\mathrm{X}_{1}+\mathrm{X}_{2}\right)$
which can be renamed
$\mathrm{R}+j \mathrm{X}$
where $R=R_{1}+R_{2}$ and $\mathrm{X}=\mathrm{X}_{1}+\mathrm{X}_{2}$

This ought to be almost painfully obvious, but in case it isn't, the whole thing should be quite clear if it is done graphically as in Fig. 4. Here it is all the same whether the whole impedance, \mathbf{Z}, is arrived at by adding the two separate impedances \mathbf{Z}_{1} and \mathbf{Z}_{2}, either as wholes, or in steps (R_{1} to the right, $j \mathrm{X}_{1}$ up, R_{2} to the right, $j \mathbf{X}_{2}$ up) or after classification (R_{1} to the right, R_{2} to the right, $j \mathrm{X}_{1}$ up, $j \mathrm{X}_{2}$ up).
'So what ?" you say. Well, provided that it was obvious to you all along that when adding two-or any number-of impedances in series the resistances and reactances could be separately added to reduce the circuit to only two elements-one omnibus resistance and one omnibus react-ance-then the above does not carry you any further, except perhaps to emphasize the basic principle of combining impedances in the j manner. Once you have got the whole impedance into the form

$$
\mathbf{Z}=\mathbf{R}+j \mathbf{X}
$$

then the magnitude of \mathbf{Z}, which is denoted by Z, can be calculated in the usual way from

$$
Z=\sqrt{R^{2}+X^{2}}
$$

and the phase angle from

$$
\tan \phi=X / R
$$

Actually, hawever, one often doesn't bother to do so. To specify
any impedance completely, two things are necessary. They can be the magnitude and phase angle, Z / ϕ; for example $38.1 \Omega / 23.2^{\circ}$ in Fig. r. But seeing how convenient it is to work with j (if you don't see yet, I hope you soon will), it is often better to adopt the alternative method, $\mathrm{R}+j \mathrm{X}$, and to say that the impedance in Fig. I is $35+j 15$. This is the form in which some types of impedancemeasuring instrument read. There are still other forms, such as the sin-and-cos form ; but that is another story. The choice is purely a matter of ease and convenience, just as the settling of a debt may take the alternative forms of a bar of gold, a cheque, a shipment of coal, or an entry in a book. Similarly, there are standard methods of converting from one form to another. For impedances, the $\mathrm{R}+j \mathrm{X}$ form is becoming increasingly popular.

As you are no doubt bursting to point out, using j does nothing to simplify the Fig. I calculation if you have to find the impedance in the Z / ϕ form. It only provides an alternative form that cuts out the $\sqrt{\mathrm{R}^{2}+\overline{X^{2}}}$ work. But try a slightly less simple example-Fig. 5. Here there are two impedances in parallel. Now the beauty of the j method is that by substituting Z's for R's the ordinary D.C. circuit principles-Ohm's Law and all that-can be used for

Fig. 5. General case of two impedances in parallel.
A.C. circuits. The rule for resistances in parallel is

$$
R=\frac{I}{\frac{I}{R_{1}}+\frac{I}{R_{2}}}
$$

which easily reduces to

$$
R=\frac{R_{1} R_{2}}{R_{1}+R_{2}}
$$

In the same way

$$
\mathbf{Z}=\frac{\mathbf{Z}_{1} \mathbf{Z}_{2}}{\mathbf{Z}_{1}+\mathbf{Z}_{2}}
$$

To work this out for completely general \mathbf{Z}_{1} and \mathbf{Z}_{2}-that is to say, each being any possible combina-
tion of R and X -is admittedly quite a lengthy job by this means, and the final formula is complicated. For the sake of clearness, take the special case of it shown in Fig. 6, where the circuit is supposed to be tuned to series resonance by making $\mathbf{X}_{1}=-\mathbf{X}_{2}=$ (say) $\mathrm{X} . \quad \mathrm{R}_{2}$ is zero; so call R_{1} just R

$$
\begin{aligned}
& \text { Then } \\
& \text { So } \quad \begin{array}{l}
\mathbf{Z}_{\mathbf{2}}=-j \mathbf{X} \\
\mathbf{Z}=\frac{\mathbf{Z}_{1} \mathbf{Z}_{2}}{\mathbf{Z}_{1}+\mathbf{Z}_{2}}
\end{array} \\
& =\frac{(\mathrm{R}+j \mathbf{X})(-j \mathbf{X})}{\mathrm{R}+j \mathbf{X}-j \mathbf{X}} \\
& =\frac{X^{2}-j X R}{R} \\
& =\frac{\mathrm{N}^{2}}{\mathrm{~K}}-j \mathrm{X}
\end{aligned}
$$

This means that although in the loop circuit, in which all three elements are in series, the two reactances cancel out leaving only R, as a parallel or rejector circuit \mathbf{Z} is not a pure resistance. It is, in effect, a pure resistance, in magnitude X^{2} / R, in series with a capacitive reactance which is the same as \mathbf{X}_{2}. Generally in radio circuits R is very small compared with X , so $\mathrm{X}_{2} / \mathrm{lR}$ (the so-called dynamic resistance) is very large compared with X , and the $-j \mathrm{X}$ can almost be neglected.

Compare the above very easy working with the old $\sqrt{R^{2}+X^{2}}$ way. First it would be necessary to transform X_{1} and R_{3} into their parallel equivalents; then combine the resultant reactance with

Fig. 6. Special example of impedances in parallel, in which X_{1} is made equal to - \mathbf{X}_{2}. The j method gives a quick solution.
X_{2}; and then transform the resulting X and R into series equivalents.

That is not to say the j method is always the best. Experience shows which method to choose. But even apart from its usefulness for such calculations as the above, it is worth while as a link between algebraical and graphical work, and generally for making things more intelligible. And I have kept to only one part of j-work impedances. One really ought to start with currents and voltages, and do the thing properly under the heading of "Vectors." But, as I said, my function is not to duplicate what the books say; only (this time) to try to show that j is useful and not unreasonably hard to understand.

Valve Symbols

THE British Standards Institution (28, Victoria Street, London, S.W.I) has recently issued a pamphlet (B.S.1409: 1947) giving standardized letter symbols for reference to electrodes and quantities relating to valves. All symbols for elements or quantities inside a valve are small letters, while those referring to externals are capitals; thus, γ_{a} refers to the internal A.C. resistance while R_{4} is used for external resistance. Similarly, $c_{a g}$ is the internal anode-grid capacitance but $\mathrm{C}_{a \rho}$ any external capacitance across the same points. Double subscripts are used, as above, to indicate the points between which the element is effective.

The valve electrodes are indicated by small initial letters of their names, as " a " for anode, with the exception of the cathode which is designated by " k." This is Continental usage and is strange to British eyes; it is doubtless riecessitated by the use of " c " for capacitance.

The sections of multiple valves are labelled by letter subscripts, as " a_{d} " for diode anode, while the halves of double valves are indicated by single and double "ticks" as, $k^{\prime}, g^{\prime}, a^{\prime}, k^{\prime \prime}, g^{\prime \prime}, a^{\prime \prime}$, for a double triode. The various grids of multielectrode valves are indicated by number subscripts in order outwards from the cathode. B.S. 1409 costs 2 S .

"High-quality Amplifier Design"
 A Correction

In Fig. 3 of this article in last month's issue, the anode load of V_{2} should be $47 \mathrm{k} \Omega$, and not $4.7 \mathrm{k} \Omega$ as shown.

The author recommends the addition of a $47-\mathrm{pF}$ capacitor across each of the $0.47-\mathrm{M} \Omega$ resistors feeding the grid of V_{2}, especially if a screened lead is used to feed this grid. The addition recommended makes for better balancing of the circuit at high frequencies, with slight reduction of distortion and slightly less phase-shift.

How to

WIN SALES

and

Influence people

Lesson number one in selling is to present your product attractively. We are specialists in this field. We design and build cases that not only fit the job but do a jobof hard selling. And we work fast-7 days from rough' sketch to finished product, if necessary.

IMPOSSIBLE? BUT IT'S TRUE

TRY US AND SEE

ISHOFS

PRECISION BUILT
INSTRUMENT CASES
112-116, NEW OXFORD ST.,
LONDON, W.C.I. museum 594 .

Unbiased

By fREE GRID

Is Spookology Spurious?

IDARE say that some of you may have heard of the famous rectory at Borley, in Suffolk. It is hard by the ancient town of Sudbury where Mr. Pickwick laid down the principles which he deemed it expedient to follow whenever he found himself in the midst of an excited election crowd, as he did when he and his followers were in that famous old borough.

It is not with any desire to adopt his advice of shouting with the crowd that I raise the subject of Borley rectory. If recent reports are to be believed, it is still known as the most haunted house in England, as it was when I recollect it in its heyday some thirty or more years ago; and this, mark you, even though it has since been destroyed by fire and razed to the ground. What surprises me is that although it has been visited by Professor Jaad and by sundry B.B.C. officials, nobody seems as yet to have had the gumption to adopt modera scientific research methods, such as radar, to elucidate the mystery.

A paranormal entity.
They have been content to rely for their observations on the human senses to detect the presence or otherwise of what I see are now described as paranormal entitiesthese being the same things as you and I in our vulgar unscientific way used to call ghosts.

It has already been pointed out in

Wireless World (page 17.f. May, 1946) that American observers have shown that these so-called paranormal entities are opaque to radio waves of certain length and, therefore, give an indication of their presence on the radar screen. This new application of science is known as radio-psycheuresis, and the specially designed radar apparatus which it employs is called a radiopsycheurlator.

It looks, therefore, as if the duty of being the first to use this new radio aid to ghost detection will devolve on me. Quite frankly I don't intend to go alone, not because I am afeared of paranormal manifestaLions but simply because my unsupported testimony might be received with incredulity in scientific circles. In any case, I shall want somebody to attend to the dieseldriven generator for supplying power to the radar apparatus. Any reader who is prepared to share my damp and dismal vigil should, therefore, get in touch with the Editor.

Rationalized Radio

$\mathrm{I}^{\mathrm{T}}$$T$ is astonishing how difficult it is to argue with some men. If you are not very careful they will, when a discussion threatens to go against them, adopt the tactics of a woman or a cross-examining counsel and browbeat and confuse you to such an extent that you will find yourself using your own arguments to contradict yourself. You finally end up by not knowing whether you are for or against the thing you are arguing about. I well recollect this happening to me some years ago when giving expert evidence for the Crown in a well-known murder trial which ended in the jury stopping the case and the acquitted prisoner giving me the inside story of the crime as a token of his gratitude.

The reason that I mention this now is that I have recently had a very heated argument with a man who wants to adopt what I call totalitarian methods in broadcast listening although he terms it the rationalization of radio. He points out, quite rightly, that the function - of a radio receiver is fundamenially the same as that of a transmitter.

Buth are reproducers, their function being to give out a faithful rendering of what is put into them, be it good, bad or indifferent from a musician's point of view. My friend further states that this goal of perfection is not, and cannot be, attained with our present knowledge. Various deliberate distortions, such as contrast contraction, have to be introduced in the transmitter and

Expert evidence.
these ought to be carefully iraned out and counterbalanced in the receiver.

All this seems obvious, but where 1 fail to agree with him is in his methods of carrying out his ideal. He suggests stopping the sale of ordinary radio sets and having special receivers issued by the B.B.C. These would be designed by their engineers to meet the characteristics of the corporation's transmitters. The sets would be serviced and controlled by the B.B.C. in much the same manner as our telephones are supplied and looked after by the G.P.O.

This is, of course, sheer radio totalitarianism and, as 1 pointed out to my idealistic friend, if we submitted to it we might just as well abandon the radio link altogether and get the B.B.C. to supply us with carrier-current programmes over the lighting mains. Instantly he agreed with me and, before I knew where I was, I found myself being congratulated on being a convert to the carrier-current system. It is, of course, this sort of technique in argument which is so dangerous and so strongly akin to political platform methods where both sides spea'r with such a mixture of sincerity, conviction and low cunning that you end up by not knowing what to believe and caring less.

LETTERS TO THE EDITOIR

Is H.F. Broadcasting Worth While? • F.M., A.M., and Interference - Impregnation of Windings - Awkward Components

Short-wave Broadcasting

 THOMAS RODDAM'S article 'Short Waves for Pleasure,' in your October issuc, together with the statement of BrigadierGeneral Stoner. Chief Communications Engineer, United Nations, that of the $300,000,000$ people throughout the world who daily listen to some form of broadcasting less than 3 per cent hear any form of direct short-wave broadcast, prompts me to write about the appalling waste of frequency channels, not to mention public money, that is being expended on short-wave broadcasting through out the world.Under present chaotic conclitions the reception of a shortwave station is a grimly serious business for which the ordinary broadcast listener with his single ($16-50$ metres) short-wave band receiver is, to put it mildly, hopelessty ill-equipped, and when a station has been tuned in the programme value is nil unless the wanted station happens to be the strongest signal in the band at that geographical point.

Not satisfied with the truly appalling chaos that exists, the broadcasting authorities of nearly every country in the world whose treasury can squeeze the necessary funds from the taxpayers are striving to increase their transmissions in every language and dialect with which mankind is afflcted. Most of the peoples speaking these languages, incidentally, are too poor to eat, let alone afford the doubtful luxury of a radio receiver capable of receiving these transmissions.

Could anything be more insane? The magic of the word "propaganda" has so allured all the ruling powers-that-be in the world that this senseless waste of public money, labour, and communication channels must go on. National prestige would suffer otherwise, forsooth! But so long as the B.B.C., for instance, can produce its odd letter or so of en-
thusiastic appreciation from an eccentric Kaffir on the African veldt, I suppose the end will justify the means.

Surely it is time for a general stocktaking of the whole field of short-wave broadcasting, to assess its value to the community in terms of the enormous expenditure of money, time and valuable technical and other labour. In this it is the duty of radio technicians to take the lead in arous ing governments to a sense of responsibility in this matter.

The technical press and the radio engineering profession can clischarge its duty to the people at large by ceaselessly "plugging" the present mutually unsatisfactory state of affairs. Some day the truth will penctrate the deep recesses of Portland Place, Whitehall, and (who knows?) even beyond the Oder and the Statue of Liberty.
F. W. T. ATKIN.

London, W.9.

"F.M. and Monopoly"

A LETTER under this heading in your January issue contains the statement: " Only long overdue legislation (already existing in certain European countries) prevents a selfish minority from being obliged to keep offending apparatus in good order and fit suppressors-the cost of which would be quite small."

This frequent complaint about " selfish minorities" and the like incites me to ask if your correspondents can tell us, more precisely, what they mean by these expressions. And do they really believe that the fitting of suppressors to a limited range of appara-tus-amenable to measurement and control-will, alone, suffice to eliminate the more prevalent types of interference.

As to the existence of legislation in other countries; can anyone name a country in Europe (or elsewhere) where the listener, intent on good reception, has, on

The new 42REH has advantages of complete weather-proofness, smaller overall length, better weight distribution and consequently greater ease in handling, which make this one of the most popular of the new F.I. loudspeakers. The horn is designed for use with the standard F.I. L.S. 7 Unit and allows for this unit to be driven to 12 watts input. A spun aluminium cover over the unit has room for housing a suitable matching transformer.

The construction has been designed so that the whole unit is assembled and held together with ONE LARGE NUT only.
This construction enables a number of units to be packed for export in a space which is a fraction of that normally required: assembly is a matter of a few minutes unskilled labour.
This unique feature will recommend jitself to all export buyers particularly.
 FILM INDUSTRIES LTD. EO, PADDINGTON ST., W. 1 Talephone: WELHeck 2385

Letters to the Editor-

average, better opportunities and service than is available in these islands?

Lastly: whilst the fitting of suppressors and the elimination of interference is most desirable, it may be that the cost, if applied to all potentially offending apparatus would press too hard on our national economy to be sanctioned at the present time. This, I must add, is personal opinion, and it may be wrong, but, at least, it seems a reasonable assumption, having regard to the many other cuts and restrictions in national expenditure.

Rugby. T. H. KINMAN.

THE focal point of W. H. Cazaly's letter on F.M. appears to be a rash presumption that " the great majority of the listening public do not like, or want, super-high-fidelity reproduction.'

As we have never had the chance of hearing such reproduction it is astonishing that Mr. Cazaly can glibly state that we don't like it. If he pauses to think for a moment, he will, no doubt, admit that our receivers invariably employ circuits designed, in the interests of selectivity, to remove most of the high, and all the very high audio frequencies. Many and various attempts have been made, usually by the use of electrical and mechanical resonances, to replace, in the amplifier and speaker, what has been carefully eliminated in the tuned circuits. This does not give fidelity, any more than do gramophone records reproduced through
level" amplifiers.
It is true that there is very little to choose between wide-band A.M. and F.M. so far as the recreation of studio sound is concerned. It is in the matter of interference that F.M. scores so heavily, for, to make A.M. as silent a service, all electrical apparatus, including lighting switches, would have to be fitted with suppressors. This is impracticable. In addition, F.M. can deal effectively with thunderstorms and atmospherics, while A.M. and legislation most certainly can not.

During the last few weeks I have been listening to the B.B.C. experimental F.M. transmissions
from Alexandra Palace on an unpretentious but carefully homemade receiver. The quality is astonishing, and the silent back ground quite uncanny. Before I am accused of living in Alexandra Park let me say that I am using an indoor dipole 25 miles from the transmitter, which, I believe, achieves a mere half-kilowatt in its aerial.

It is really rather frivolous to suggest that one will be forced to listen to the National F.M. service exclusively. There is no unduly difficult or expensive problem involved in incorporating F.M. in an all-wave receiver, although, to cover foreign listening, an additional short-wave band would probably suffice. Incidentally, it is cheaper to install a F.M. transmitter than to pro vide an equivalent A.M. coverage.

Obviously, the development of such a service will be delayed by present economic difficulties, but I sincerely hope that this country will proceed, as rapidly as possible, with a system which seems to offer the nearest approach to perfect quality in broadcast reception currently available.

S. C. BARRELL.

Ashstead, Surrey.

Television Standards

I^{1}N his references to television in his article "Broadcasting Jubilee,' ' in your December issue, P. P. Eckersley has surely overlooked the fact that television is essentially an entertainment for the home.

Criticism of television by nontechnical viewers, is not on account of the definition or the size of screen, but rather on account of the lack of colour. So many items in television broadcasts need colour; ballet, opera, exhibitions of pictures for example. For home reception a 600 - or 700 -line picture in colour would I think be entirely satisfactory.

The " electronic distribution of films" or cinema television, is an entirely separate subject. Possibly 1,500 lines would be required for this, but the problem is one for the cinema industry.

To. lay down standards for home television one must take into account the sort of programmes transmitted and I would say that the B.B.C. has certainly sketched
the general pattern of the television art.

The cinema is not a yardstick for the measurement of the "goodness" of a television picture. liven the Government Committee made this error.
G. H. L. THOMAS.

Herne Bay, Kent.

Impregnated Windings

IN a letter to the Editor of Plastics (Dec., 1947, issue), C. R. Pye expressed concern at the attitude of British radio manufacturers towards the impregnation of windings. There are some statements and criticisms in this letter which cannot be allowed to pass unchallenged.

Mr. Pye states, correctly, that few of the transformers and chokes exhibited at Radiolympia were impregnated. He infers, incorrectly, that the same is true of the production models. The omission of impregnation for exhibition purposes improves appearance, and enables the standard of workmanship to be seen more clearly. No other reasons need be sought.

Mr. Pye " made enquiries at a technical level," and was told that " manufacturers were not convinced of the benefits of impregnation." In view of Mr. Pye's remarks on P. 625 of the same joumal, this is understandable. Nevertheless, he proceeds to accuse the industry of sabotaging the export drive by this attitude, with many details of the perils which beset "dry" windings.

He is apparently unaware of the policy of designing special export models, speaking of " exportable commodities [which] are unsound technically." He states with more courage than wisdom: "if components can be kept free from permeation of moisture they will function satisfactorily." One would wish this were true. Personal experience of tropical conditions has shown that this is a comparatively minor point. Mr. Pye refrains from stating the effect of impregnation on fungoid growth and insects. He does not mention that there is no impermeable impregnant, thus removing all reason for using the process.

The truth is that impregnation is used by all reputable manufacturers, the main advantage being increased mechanical rigidity. It
is very doubtful if it would ever be used for moisture protection alone. There are many more efficient methods of achieving this, such as immersion in bitumen. Examples of this were shown at Radiolympia, but were not readily recognizable as transformers and chokes by those unfamiliar with such gear. R.F. coils are generally waxed, for similar reasons. The resulting " tropicalization" is of an adequate standard

Mr. Pye is a varnish chemist. We may therefore forgive electrical inaccuracies. We cannot forgive unjustified criticism based on such inaccuracies. If Mr. Pye can produce an impregnant that will not react with enamel insulation, while retaining a low permeability, its adoption will follow without any encouragement

> D. W. THOMASSON

Electronic Applications Research Laboratory, Exeter

Components for Amateurs

MAY I ventilate in your columns a grievance amateurs hold against manufacturers of certain larger componentsnotably paper smoothing capacitors, chokes, transformers, etc.who, with few exceptions, insist on building these units upsidedown. The designs, with their fixing flanges at the bottom and terminals perched at the top, are obviously relics of the old "'breadboard hookup" days.

Even the not-so-modern amateur uses a metal chassis as the basis of his set and likes to keep his wiring ship-shape underneath. Valve manufacturers realized this many years ago but the fact seems to have escaped designers of other components with a result that wiring keeps popping in and out of the chassis and trailing up and down components like a creeper on a trellis.

Perversely, these unshrouded terminals held magnificently aloft are invariably high potential spots which make running adjustments to pre-sets quite unnecessarily precarious.

With components made the right way up;i.e., with terminals protruding into the chassis at the flanged or fixing end, there is no reason why anything on the upper deck should be dangerously live and the improvement in appear-
ance and efficiency is, surely, obvious.

S. JOHNSON

 Twyford, Berks.
Television and Thunderstorms

IN connection with Mr. Hill's experiences (your Sept. issue) some observations which I made at radar stations in Denmark may be relevant. The frequency mainly used there was $600 \mathrm{Mc} / \mathrm{s}$. and the greatest distance from which echos normally could be received was about 30 miles. Under certain weather conditions this range increased for a short time to 150 miles and more.

The reason for this increase was obviously layers of different temperature in the atmosphere ("inversions of temperature"). which refracted the waves back to the ground, so that they followed the curvature of the earth over a long distance. Similar conditions in the atmosphere may also account for the extremely good reception of television outside the local zone just before a thunderstorm. OTFRID REIGER.

Vienna.

MANUFACTURERS' LITERATURE

I
LLLUSTRATED leaflet describing complete equipment for visual alignment of R.F. and I.F. circuits from Erskine Laboratories, Scalby, Scarborough, Yorks.
" Mullard Valves for Industry and Communications," Part -1, including valves up to 25 watts dissipation supplied for electronic and telecommunication equipment, from Technical Publications Dept., Mullard Wireless Service Co., Century House, Shaftesbury Avenue, V.C.2. Circulation restricted to professional equipment designers.
Catalogue of photoelectric cells from Radio-Electronics, St. George's Works, Merton Road, Norwood Junction, London, S.E. 25

Illustrated leaflet describing Export Model 127 car radio receiver for short, medium, and long waves from Romac Radio Corporation, The Hyde, Hendon, London, N.W.g.
Technical details of transformer turns-ratio bridge (Type 307 B) and oscillator detector units (Types 403A and 404A) from Dawe Instruments, Harlequin Avenue, Great West Road, Brentford, Middlesex.
" Cossor Gee Mark III," Part I, General Description, from Cossor Radar, Wren Mill, Chadderton, Lancs. Available to air operating companies, service organizations, etc.

The following figures

are the pass figures
on final test for

Model QA12/P

AMPLIFIER

ACOUSTICAL MANUFACTURING

 CO., LTD., HUNTINGDONTEL: 361

RANDOM RADIATIONS

By "DIALLIST"

Interference

ONE comes across some queer faults! Here's one that gave me a spot of bother. For some time it had been noticed that wireless receivers working in the house had occasional fits of noisiness. Neighbours were mentally anathematized for using radiating apparatus; I felt quite sure that nothing in my house could be to blame. One evening a fuse blew. Obviously it "didn't orter," for it was a 5 -amp fuse and the circuits served by it never carried more than I amp; still, fuses do "go" sometimes owing to old age and corrosion and as there was no further trouble when it was replaced nothing more was thought of it. A few evenings later the noisiness of the receivers increased and remained incessant. I decided to investigate next morning, just to make certain that nothing was amiss with lighting or power circuits, all of which, by the way, are of lead-covered cable, with a sheath-to-earth resistance well under the regulation ohm. Fate was kind to me in three different ways when I switched off at the mains. First of all, the old-fashioned distribution box, put in before my time, has separate switches in the phase and neutral legs of the main lighting leads: secondly. I chanced to switch off the neutral Girst; thirdly the lamp near the box happened to be alight. You can imagine that when it stayed alight with the neutral lead broken 1 did a bit of quick thinking. Clearly, a dead short from neutral to earth. But where? There are thirty-eight outlets in the house and, as you'll gather, no small length of wiring.

Sleuthing

It was a fault that might have taken ages to locate but for the fortunate fact that soon after I came into the house I'd reorganized the out-of-date fusing system, arranging matters so that groups of three, four or at the most five lighting outlets were served by separate sub-circuits, cach with 5 -amp fuses in both legs. By removing these fuses, one pair at a time, with only the phase lead switched on at the mains one should be able either to track it down to an individual sub-circuit, or to exoncrate the lighting crcuits altogether. Recalling the blown fuse of some days before, the first bridge 1 removed was that which had beld it. The lights on both sides of it went
out. To verify, I replaced it and tried the other fuses pair by pair. Lights on the mains side of all of them remained glowing. The power circuits also gave negative results. The faulty sub-circuit served five outlets. A careful inspection of the visible - parts of them disclosed nothing wrong, so with a sigh of resignation I rolled back the carpet. found the required floorboard by the tell-tale marks of the "electricians' chisel" and got it up. With its six pairs of leads, the junction box was quite a little Clapham. Better have a look inside. I pulled off the cover before switching off and as I did so the lights went out.

Cause and Effect

Have. you guessed yet what was causing the trouble? Let me tell you before you have your final shot that all the "Scruits" were in place, with their skirts well over the insulation in every case. Switching off. I verified every connection and there were certainly no uncovered bits of the bared ends. I knelt, thinking it over and twiddling the metal cover in my hands. Suddenly I let fly a naughty word and transferred a cut and bleeding finger to my mouth. What had bitten me was the jagged edge of a small hole which someone had for some unknown reason made in the cover-I remembered then that the box, was an old one which I had transferred from another place when wiring up those circuits. Careful examination showed a cut that the jag had made into the insulation of a neutral lead. Now, why was it over five years before the insulation was cut right through? That time had passed between the installation of the box and the first signs of the fault. Why, again, was the fault intermittent? It obviously was, for radio sets were only occasionally noisy until the final evening. And not long before that a Megger test had given highly satisfactory readings. 1 believe the reason is this. The junction box was fixed to a joist, which probably moved slightly not only when people walked over the floor, but also as the wood expanded and contracted under the influence of weather conditions. The little jagged piece eventually sazed its way through the rubber and cotton. When it had done that, movements of the joist sometimes made and sometimes broke the short that had caused the trouble. A neutral-to-
earth short is a fault that may easily occur in a house and remain unsuspected, particularly if the wiring is old 1 t might not be dangerous, unless a phase-to-neutral fault occurred at the generating station. But it is certainly a most undesirable state of affairs and it may be the cause of mysterious fuse-blowings and of noisy radio reception, if of nothing worse. Hence, should such symptoms occur and other expedients fail, tests on the lines described may be profitable.

$$
\square \square \square
$$

The Steel Bars

MANY thanks to the numerous readers who sent in answers to my very easy magnet problem (December issue) : how can you produce a pair of steel bars of exactly the same size and appearance, one of which is magnetized and the other not, such that the magnet cannot be detected at once by placing them in T-formation. The solution is, of course, to magnetize one so that there are similar poles at either end and an area of opposite polarity in the middle. There is then marked attraction between the two, no matter which is the cross-piece and which the stalk of the T. Suecial thanks to one reader who points out an unpardonable piece of loose wording on my part. I wrote that if the bar magnetized so as to have its opposite poles at either end were used as the cross-piece and the nonmagnet as the stalk, there would be no attraction between the two. I should, of course, have written "minimum attraction," for it is only at a point that the force is zero, the end of the other bar covers an area.

Teleciné Pictures

REFERRING to my suggestion last month that "Telecine Review " might include films transported by air from distant places a third correspondent writes: "Why not transmit the images to this country, frame by frame, by ordinary still-picture radio methods, reassemble them into a film and televise that? The time-lag would then be greatly reduced." There may be something in the idea if a means of speeding up still picture transmissions is evolved; but I hardly think it could be worked with present systems. So far as I remember from my last visit to Cable \& Wireless, the time needed for transmitting a 5 in $\times 4$ in picture is eight minutes. Suppose that prints of 12 consecutive ciné pictures are pasted up into a rectangle of about that size, we could send and receive them in eight minutes. The definition
would, of course, be rather poor, since each individual frame would be made up of only $1 / 12$ th of the total number of picture points. Still, people might not be overcritical about pictures of distant events, televised a few hours after their occurrence. To make things easy let us suppose that 25 individual pictures could be transmitted and received in 16 minutes. Then the time required for transmitting the $25 \times$ is images needed for a 15 second news flash would be 15×16 minutes $=4$ hours, assuming that there were no delays or interruptions of any kind. As many of the radio picture services are abready working at their maximum capacity it might be a matter of some difficulty to secure a 4 -hours' run just when you wanted it. It would also be pretty costly.
$\square \square \square$
Television Forges Ahead

F

FOR some time now television receivers have been selling in the London area (and even in places surprisingly far outside it) just about as fast as manufacturers can turn them out in the factorics. The number of television licences has increased by 50 per cent since the end of May and all the signs are that the rate of increaso now is governed only by the rate of supply of televisors, the latter being in its turn governed to a great extent by the rate of supply of the right kind of cathode-ray tubes. The man in the strect appears to have become reconciled to the $7 \frac{1}{2}$ in by 6 in picture, realising that, small though it may seem, it is amply large for the average living-room of to-day. Certainly, the best-sellers amongst television receivers are those using 9 -inch tubes. Those who have bought them seem to be perfectly satisfied with the results and I don't often hear people regretting that the picture isn't a bit bigger. With a set that is interlacing as it should and which handles frequencies up to $2.5 \mathrm{Mc} / \mathrm{s}$ adequately, the definition is so good that one soon ceases to think about picture size.

Remarkable Achievement

An outstanding achievement in television was the O.B. of the pantomime from the Regal Theatre at Edmonton. It was announced before the programme started that nothing but the ordinary stage lighting would be used. One expected, perhaps, rather muzzy images and was prepared to make allowances. Actually, the broadcast was first-rate-a great credit to the engineers responsible, for even with the newest type of C.P.S. camera there mast have been some pretty problems.

- DVER 200 TYPES DESIGNED

Produced by the largest manufacturers of electrical switches, the famous BULGIN range affords you the choice of over 200 different types of high-quality switches, covering all requirements and suitable for a wide range of voltage and current ratings. BULGIN switches, supplied in nickel, Florentine-bronze and gun-metal finishes, are made from the finest materials only, and can be relied upon to give long and trouble-free service. BULGIN switches give the distinctive touch!

A.F.BULGIN \& GO. LTD. BYE-PASS RD. BARKING

Telephone: RIPplezvay 3474 (5 lines)

RECENT INVENTIONS

A Selection of the More Interesting Radio Developments

TRANSMISSION LINE AMPLIFIER

THE control grid of a triode valve V with plane electrodes, designed for use as a coavial line amplifere of centimetre waves, is formed with and carried by an external copper disc D. which is sealed through the glass of the bulb, and is carthed. so far as radio-frequency currents are concerred, by capacity coupling to the walls of the cathode and anode resonators A, B. Input energy is applied to the cathode resonator A from a coaxial feeder 1. . which can be moved axially to adjust the coupling. The cathode is heated through the centre core of that resonator. The amplified output is drawn off from the resonator B by a coasial line L_{1}, which makes a push-fit, so that the usual coupling loop can be rotated.

The earthing of the grid prevents any positive feedback between the anode and grid. In addition, since the anode current also flows through the input impedance. this provides sufficient

Coaxial line amplifier.
negative feedback to ensure complete stability.
Standard Telephones \& Cables, Ltd., and S. G. Tomlin. Application date May roth, 1941. No. 585447.

TELEVISION RECEIVERS

THE present television service may eventually be replaced by one using up to 600 or 800 scanning lines per frame. The higher definition will naturally increase the cost of the receiver, putting an undue strain on those who have little fault to find with the standard of reproduction now available.
The inventors have devised a relatively inexpensive type of set which is capable of receiving, say, an 800 -line transmission and of reproducing a $400-$ line picture from it.

The received synchronizing impulses are applied, through an integrating circuit, to a gas-filled relay which responds only to every second impulse. The saw-toothed time-base voltage initiated by the first pulse overlaps the

The British abstracts published bere are prepared with the permission of the Controller of H.M. Stationery Onfe, from specifications obtainable at the Patent Offce, 25, Southampton Bulldiags, London, W.C.2, price 1/- each.

succecding pulse, which is therefore in effective. This avoids the circuit con plications required to follow an ultm fast "flyback," and so saves cost.

The Gencral Electric Co., Ltd., ant D. C. Esplcy. Application date October 6th, 1943. No. 587772

NAVIGATIONAL SYSTEMS

T°O increase the sharpness of the off-course" indication given by an approach beacon of the overlapping beam type, the carrier wave is radiated separately from the signal sidcband energy. By suitably adjusting the phasing of the currents fed to the aerials, the maximum of the sideband radiation pattern is made to coincide substantially with the minimum of the carrier pattern, though the carrier amplitude is always kept higher than the maximum sideband amplitude. Both patterns are then simultaneously alternated about the desired line of approach.

The aircraft receiver is provided with automatic volume control, so that its gain is always regulated by the prevailing level of carrier wave energy, being greatest when the sideband level is lowest, and vice versa. This provides a clearcut indicator response of the order of one decibel per degree of deviation.
Standard Telephones \& Cables, Ltd (assignees of W. D. McGuignan). Convention date (U.S.A.) November 15th, 1943. No. 5868i4.

PHASE INVERTERS

APUSH-PULL amplifier A is driven from an unbalanced signal source Sthrough the phasing network shown. The bridge is normally balanced with no signal input, the respective anode resistances R_{1}, R_{2} and cathode resistances $\mathbf{R}_{3}, \mathbf{R}_{4}$ of the two valves $\mathrm{V}_{1}, \mathrm{~V}_{2}$ all being equal. High tension is applied across one diagonal of the bridge, the H.T. source being centretapped at Z to the zero point of the push-pull amplifier, which is connected across the opposite diagonal.
With this arrangement, an input signal applied to the grid of the valve V_{2}, across a

Bridge-type phase splitter.
resistance R, unbalances the bridge, and develops output voltages at T and I_{1} that are oppositely phased with respect to the point 2 . Fluctuations in the supply voltages are automatically balanced out in the bridge, and any difference in the operating characteristics of the valves V_{1}, V_{2} can be offset by adjusting the output
terminals T, T, along the resistance arms

Marconis Wiveless Tclegraph Co. Lid. (assignees of H. W. Berry). Con vention date (U.S.A.) July 27th, 1943 No. 584191

SHORT-WAVE VALVES

T$\int \begin{gathered}H E \text { value shown is designed to be } \\ \text { directly coupled }\end{gathered}$ directly coupled to a coaxial transmission line carrying centimetre waves. The bulb is divjrled by a metallic disc

Grounded-grid triode.
D, which is sealed in through the glass and is connected to the control grid, which is located in an aperture at its centre. The cathocle is mounted just below the grid, the leads being sealed through the lower pinch. The anode A is thimble-shaped, to take the centre core of a coaxial line, and is sealed to the upper part of the bulb The inter-electrode spacing is very close.

In operation, the valve is used as an "inverted" or grounded-grid amplifier, the grid disc D being earthed either directly or by close capacity coupling, to the walls of the transmission line. The dise then screens the

input from the output circuit, and otherwise serves to stabilize the valve and give it a high amplification factor.

Standard Telephones \& Cables, Ltd., and J. Foster. Application date, June 13th, 1941. No. 585448.

RESISTORS • CERAMICONS • HI-K CERAMICONS - POTENTIOMETERS SUPPRESSORS - VITREOUS ENAMELLED WIRE-WOUND RESISTORS Erie Resistor Ltd., The Hyde, London, N.W.9, England Telephone: COLindale 8011-4. Obbles: REsisTOR,LONDON. Feotorles: London \& Qt. Yermouth, Englend Toronto, Cenade Erle, Pa.. U.e.A.

(4L) DATA SHEET N: 1

TIME BASE UNIT TYPE 84

Sweep is substantially linear over the frequency range which may be extended downwards to 0.5 cps . by the addition of external capacitors. The time base may be locked to an external impulse, or the signal developed on one of the Y plates, or to the 50 cps . mains supply. Sweep amplitude is controlled without affecting amplitude or synchronizing and the amplifier delivers balanced P.P. voltage to the X plate, eliminating trapezium distortion, etc.

Single stroke operation is available. Amplifier voltage gain is about 25 and the full screen diameter is covered without distortion. A switch arranges the internal connection of \mathbf{X} plates to terminals on the front pancl with A.C. or D.C. coupling and for single-ended or P.P. input, other positions interconnect amplifier and sweep generator. Self-contained power pack unit may be used independently as a portable time base or with other makes of oscilloscope.

LYDIATE ASL - NEAR BROMSGROVE - WORCS.

Main features include:
(i) Sweep frequency, 5-250,000 cps.
(ii) Automatic synchronizing.
(iii) Sweep expansion independent of frequency.
(iv) Push-pull deflection.
(v) Single-stroke operation.
(vi) \mathbf{X} Axis Amplifier usable independently
(vii) Plate connections available on front panel. Full details on request.

Stabilised Insulation

BY MODERN IMPREGNATION METHODS

IIYMEG

HIGH-SPEED PRODUCTION

HYMEG Synthetic Insulating Varnishes are recognised and widely used for their mechanical rigidity, improvement of electrical properties of windings ; heat. moisture, oil, acid and alkali resistance as well as for the considerably reduced stoving time necessary.
Now, special methods of continuous conveyor impregnation and baking developed with the use of HYMEG have still further reduced processing times to a fraction of those previously believed necessary.
Often faster than infra-red baking with none of the defects, reduced handling, absence of special jigs, with complete freedom from blistering, bubbling and porosity, are some of the advantages claimed and substantiated for HYMEG High Speed Production methods.

GLASS FIBRE INSULATION SYSTEM

After much research in our laboratories and in conjunction with many well-known specialist manufacturers, we have now evolved the Hymeglas system of Insulation which comprises modifications of Hymeg as used for coil impregnation to meet the varying conditions applying to each field of manufacture.

This integrated system of development is successful in enabling machines to be designed and operated without weak links in the chain of insulation below $200^{\circ} \mathrm{C}$. Thus the fullest advantage is taken of modern glass fibre insulation by providing a degree of bonding and insulation at every point in which the uniting of Hymeg impregnation with the Hymeg as used for subsidiary insulations gives a solid homogeneous winding of equally efficient characteristics and heat resistance throughous.
Hymeglas therefore virtually eliminates any risk of insulation failure and enables motors and the like to operate under abnormal conditions for long periods without risk of electrical breakdown.
Dus to the excellent space factor of glass fibre as compared with the more usual asoestos and mica Class \mathbf{B} insulations, it is often possible in redesigning with the Hymegias system to employ larger copper sections with well-known advantages.

The Berger Technical Service-the research work of which produced "HYMEG " and "HYMEGLAS"
is available to advise manufacturers on all problems of insulation. Get in touch now with-
LEWIS BERGER $\underset{\text { BE SONS LTD. (ESt. 1760) }}{\text { 35, BERKELEY SQUARE, LONDON. W.1. }}$ (elephone: MAYfair 9171.
Telephone: MAYfair 9171.
MANUFAGTURERS OF HIGH - PERFORMANCE INSULATING VARNISHES AND ENAMELS

For reception or transmission. Load factor 1.9 Kw . at $7 \mathrm{~m} / \mathrm{cs}$. Aerial spans and down lead consist of twin parallel feeder of 300 ohm impedance, polythene insulated. Pack includes all the necessary insulators, fittings, etc., for easy erection.

$$
\begin{array}{ccccc}
\text { Model FDA20 } & - & 63 & 2 & 6 \\
. & \text { FDA40 } & - & 63 & 12 \\
6
\end{array}
$$

A NTIFERENCE

Sales Division :
67, Bryanston St., Marble Areh, London, W. 1
Telephone: PADdington 7253/4;5

FOR THE
 RADIO SERVICEMAN DEALER AND OWNER

The man who enrols for an I.C.S. Radio Course learns radio thoroughly, completely, practically. When he earns his Diploma, he will KNOW radio. We are not content merely to teach the principles of radio, we want to show our students how to apply that training in practical, every-day radio service work. We train them to be successful.
Write to the I.C.s. Advisory DeDt. stating your renuirements. Our advice is fres.
You may use this coupon.
IMTERNATIONAL CORRESPONDENCE SCHOOL Ltd.
DEPT. 38, IMTERMATIONAL UULDIMES, KIMESWAY, LONDON, W.C. 2
Please explain fully about your instruction in the subject marked X.

Complete Radio Engineering

Radio Service and Sales
Radio Service Engineering
And the following Radio Examinations:-
Eritish Institution of Radio Engineers
P.M.G. Certificates for Wireless Operators City and Guilds Telecommunications
Wireless Operacors and Wireless Mechanics, R.A.F.
I.C.S. students for Examination are coached till successful.

BIRMINGHAM SOUND REPRODUCERS LTD.
Claremont Works, Old Hill, Staffs. Phone Cradley Heath 6212/3. London Office: 115, Gower Street, W.C.1. Phone Euston 7515.

To the exclusive range of sound equipment produced by B.S.R. is now added the D.R. 33 Direct Disc Recorder.
The D.R. 33 incorporates the latest developments in recording technique and is the finest direct recording instrument available. It is supplied in an attractive carrying case and is completely porsable. We should be pleased to send you further par. ticulars of this latest production of the B.S.R Research Laboracory.
Amplifiers, microphones, loudspeakers and accessories.

Realism in Sound Recording

DIRECT DISC RECORDER

Welwyn WEL WYN ELEC Teleohone Welwun Garden 78168

Qualiyy \& Relibibility

 mans transbformeas A. F. TRANSFORMERSTHERMAL DELAY SWITCHES SMOOTHING CHOKES POWER RESISTANCES.

Rate 6 - for 2 lines or leas and 3 - for every additional
line or part thereof, line or part thereof. averake lines $5-6$ words. Box
Numbers 2 words plas 1 -. Press Day : March 1948 tscoue, Nombers 2 words plas 1 -. Press Day: March 1948 lssoge,
Arat post Friday, February bit. No reaponsbulity accepted Arat noit For
lar erfors.

WARENIWG

Readers are warned that Goverrment surplus compcnents which riaf te cffered fur sale through our colurrins carry no manui, acturer's
guarantee. Many of these components will have guarantee. Many of these components will hiave been designed for special purpcses making them
unsuitable for civilian use, or may have deunsuitable for civilian use, er may have de-
teriorated as a result of the conditions under teriorated as a result of the conditions under
which they have been stired. We cannot undertake to deal with any complaints regarding
any swch compcnents purcrias d.

NEW KECEIVERS AND AMPLIFIERS
D

 Pricution toin Mhitio crinat
$\mathrm{B}^{\text {Sinar }}$
Arrangements arc being ande pre-amplafier
the British Isles. Where arramgements Ior his have not so far been completed, it is possible for our sales representative to demonstrate in
 matice eice lity transformers, coapletoly assembled and aligned 21/2 stamp for full details to the sole c
butors, Coulphone IRadio, 58 , Derby st butors, Coulphone IRadio, 58, Derby it., Orms.
kirk. Laucs. kirk. Laucs.
W. We Quality amplifier, built strictly to
Erol stage; pro-amplifiers, including bi-G trol stage; proampligers, including bi.G and chokes for this amplifier wound to W.W.
specification; 12 valve, 20 watt, 4 -chanvej clectronlc mixing: ac/dic amplifier and other ac and ac/dc types; $21 / 2 d$ stamp lor particu-

 mith poo pubul and treble boosi (separate controls), gram input and other refinements, t35. Nakes ideal radiogram. Write for dull details or call for
demonstration. We can modify your Ril55 similarly or to your requirements. R1155 circuit and values, $2 /$ post irce. Repairs, elc. to all communication and quality receivers.-
R.T.S.. Ltd., 8, Gladatone IRd., Wimbiedon, IR.T.S. Ltd., 8, Gladstone Rd., Wimbiedon,
S. W.19. Liberty 3303 .
[9172 8. W.19. Liberty 3303.
$G^{\text {OODSELL}}$, Ltd., 40, Garcincr St... Brighlon. specification fitted with best quality compon-
euts, Partridge transformers and oil coneuts, Partridge transformers and oil condensers on 425-volt line, price C21; with voltensuring no volls in excess of 350 for the pre. amp and complete stability where high gain required, super amplifier 26gns; pre-amp in. cluding E.F. 377 with 4 position bass boost anil 4 position treble conirol and E.F. 37 as straight triorle for Hi.Fi pick-ups, for use with above, using new Denco 5. and 10 -band turrets, ims. proved I.F.T.'s and large attractive glass dials with magic eyo, available shortly; send for details.
[9169
CHARLES AMPLIFIERS-Announcing a fier-the IIFA3 incorporating it proamplifier to enable the use of moving coil pick-ups direct; this amplifier in conjunction with the B.A.E.C. twin cone spenker provide the bighest obtainable fidelity of reproduction the complete range now comprises amplifier crystal pick-ups; IIFA2 slnglo-cnded 3 for crystal pick-ups; IFFA2 singlo-cncled 3 watt
lor crystal pick-up; the IIFA3 for moving coil pick-ups; full construational blueprints, $2 / 6$ each; iull kits or separate components available or supplied ready assembled; stamp for comprehensive catalogue.-Charles Ampliflers, le, Palace Gato, Kensiogton. W.8.

PARTRIDGE MANUAL

Containing :-Many useful circuits including New 15 watt high quality amplifier with 40 db of negative feedback over three stages.
Also:-Design of Electrical Equipment including Power Supply Units. Articles on Negative feedback and Volume expansion, Acoustical Problems, Sound Reinforcing and Public Address. An appendix consisting of six selected design charts. Cross-over network circuits, etc. etc.

At last the completely revised postwar edition for which you have been waiting.

We regret the delay and advise early application as the issue is limited.

PRICE 5/- POST FREE

COUPON

Please send me post free a copy of the new Partridge Manual. I enclose P.O./Cheque value $5 /$ -

Name.

Address

ww2

Telephone:

\rightarrow Abter 2244 PARTRIDGE TRANSFORMERS LTD

76e. PETTY FRANCE LONOON. S.WI HAMBANDFR communications receiver
covering the amateur bands from
$10-160$ HAMBANDFR communications receiver HAMBandFR communications receiver
covering the amateur bands from
$10-160$ metres, 6 octal valves, crystal diode noise
limiter, bio, separate bandspread dial, sendi receive switch, built-in power pack for ac operation, $£ 22 / 10$; Radiovision preselector covering $9-90$ metres, 2 Ef50 high gain stages with regeneration, calibrated iluminated dial. built-in power pack lor ac operation, £13/13. less valves; export enquirics invited; illustrated brochure from
nADIOVISION
UADIOVISION (I,FICESTER), Ltd., 58.60. Rutland St.. Leicester. 19103 ceiver and nower pack (M.C.R.I.), 5 . valve superhet, compirte with acrial ant range $20.3,000$ metres in four bands, operates
on any voltago between 97 and 250 A.C. or on any voltago between 97 and 250 A.C. or
D.C.; f9/10; send lor one now belore Etock4 are exhausted; another apecial oller, slow motlon drives by ". Muirhead," 50-1 ratio, $10 /$ ca, postage $6 d$, a.so milliameters, 1 RU., Ćroydon. Add. 2027. L8264 UNIVERSAY ELECTRONIC PRODUC'I'S. 36, Marylebnne Migh St. Loundon, W. 1 Tel. No. Wel. 4058 . Our U.i. 7 amplifier is lesigned lor the connoisseur who requires the
best possiblo reproduction together with the Lighest standards of workmanship and materials. Write for descriptive leaflet. We
invile you to hear this amplifier demonstrated in conjunction with the Wilkins \& Wright pickuy and latest type speakers, including the perialize in high.fidelity sound reproduction will undertake the designcert and construction of RADO TRADES MANUFACTURINGCO R (EALING), Lul., 141, Iftle Eaing Lane, (Ealing 6962), pioneers in the manulacture of the "Williamson" amplifier and now the basic circuit in G.E.C. book, are producing a super edition of this lamous amplifier which is without doubt the finest reproducer yet other parts throughout of the finest quality, built on heavy gituge chassis, there is no other amplifier ollered at such a reasonable price, tested and aligned, $£ 25 / 10$. 3 -valve pre-amplifier of new design giving perlect coatrol of bass treble, £10, complete. Kit of parts with partridge translormers, £20. 10 in speakers. t2. 12 in speakers and granı motors with pick "p also supplied. Full details (stamp) from RECEIVERS, AMPLIFIERS-SECOND.HAND A^{s} new Eddystone 504 receiver in perfect condition: oifers.-Box $4973 . \quad\left[\begin{array}{l}9033 \\ \text { C. } 77 \mathrm{E} \text {. Comm. Rx. } 31 \mathrm{mcs}-550 \mathrm{kcs},\end{array}\right.$ C.A. 77 E . Comm. Rx. $31 \mathrm{mcs}-550 \mathrm{kcs}$, Xtal.
etc., periect: $£ 30 .-$ Box 4964 .. 9019 C.A. AR88 Communications receiver, exALE, 1155 A, as new, fitted \mathbf{S}. meter, noise limiter, KT61, power pack. etc. $; 20$ gns.
1 W.WAT1' amplifier, Callaro turntable [9018 13 pickup, $12 i n$ Goodman's speaker in cabinct: £25 lot.-Box 212.
4-VALVE mains chassis, long/medium, per SAVB. HIGM quality A.C. mains amplifiers. 4 watt
1 o.p., almost new; s a.c.; £7.-Ilaigh, 1083 . Nightingale Road, Carshalton, Surrey. [9034 H first-cla 12 -valve comon. recr. guaranteed first oller over £20 secures.-Box. 4461 . [8852 CIVILIAN communications receiver, 45 offer-E Easterbrook, 302, Raebura Av., Surbiton.
T WO Philips rhassis $6 v$ A.C. $110 /-$ each; - Ferguson $8 \mathbf{v}$ A C $12 \div-2.000 \mathrm{~m}$, perlect £15: 72 plugs and sockets, offers.-Box 4509 .
C. 100 with 12 .inch \quad Ingnavox speaker, C. excellent condition: $\mathbf{\Sigma 5 5}$ or near otier. G. Rice, 2, Woodlands, N.W.11. Spe. 4915 TELEVISION console, Marcou! 704 , over. did condition: $£ 75$.-Cook, 412 , St. Richard's Ru. Deal, Kent. phasing, "S " meter, puwer
[12.0 Rral pher spare valves, phones, good condition: ${ }^{9} 55$ few nearest-Box 5108.
[9159 COUND SALFS. -DX $\div 1$ Hi-fi tuner, variabls anplifier. $£ 18:$ nerfect.-Myatt, 50 . RibblesWireless world ". 2 R R.F. qualit quality aner infifine new. $£ 5 / 10$. less valves which are easily obtainable-Box 4506 . $[8915$
TELEVISION set, experimenter seling complete receiver, 12 in electrostatic tube: all post-war circuits, but no cabinet; demonClovells: Av., N.W.9. $i 45$ cash.-Davies, 32.
[903:

THE USEFVL

NEW FOLDER -
tells you all about the complete ange of Henley SOLON Electric Soldenng Irons, for the standard voltage ranges of 200/220 and 230/250: 65 wat and 125 watt models fitted with ovaltapered bits or pencil bits and 240 wat: models fitted with oval-rapered Eits are gvailable.
Write Today for the nemp folder ref. Y.io describing

W. T. HENLEY'S

EELERRAPH WORKS CO. LTD.
(En -incering Dept.)
$51-53$ Patton Garden, London, E.C.I

Y(1)U
 can become a first-class RADID ENGINEER

We are specialists in HomeStudy Tuition in Radio, Television and Mathematics. Post coupon now for free booklet and learn how you can qualify for well-paid employment or profitable spare-tlme work.

T. \& C. RADIO COLLEGE

North Road, Parkstone, Dorset
. Post in ursealed eroelope, sd. stamp)
Please send me free detalls of your HomeStudy Mathematics and Radio courves.

NAMES
ADDRESS
w.wn
$\mathrm{S}^{\text {COTT }}{ }_{16}$ Phantom. 2 chromed chassis, speaker, 4 bandz, var.
 H. If.U. Lxx, witn s-ructer, Alut o coils, 189 He.k. ke, to 30 me/s continuous coverage, Ics

 ley ribbon pick-ups, w. \&id. W. seratch filter, B.A.E.C. 12 in speaker, used experimentaliy

 valves, Hartiey Turner $12 i n$ eng. speaker;

$W_{\text {with }}^{\text {iresen }}$ P25s Magnavox 66 loudspeaker Simpsons ac molor and crystal puck-uppon plywood plasing boart, ${ }^{2} 28$ complete outfit.-11,
King, Clacton lit, St. Usyth, Essex.
[904j $\mathbf{R}^{\text {ECEELCLIL, BCBSABN. A.C. extras, spares, }}$ 20,000 o.p.v.; valve tester (American) vaives, ix and lix, ail pertect; exchange i, exca, Contax, or olfers, singly or lot; details, s.a.e.-Box ${ }^{4523}$. VLVE Scrvice communications receiver by 1 Pye, new, unused, in original packing, 16. 2,000 metres. built-in M.C. speaker, separatc power pack; price includes phones, serial, in sulators, spare bulbs and luses.-Thrupp, A. W.II. cinema anpliticr, double channct,
 spakers (some cones damaged), collection ol valyes LS6A, PP 251500 ; scen Clacton.-Oilters whole or tems to Box 4977 . capacity 19049 T ture amplifiers with three tested 1T4 midget valves, 20/- each, post iree; in aluminlum case, $22 /-$ - spare 1 'T4 valves, guaran teed, 6/- eachi holders, 6 d each--Littler, 24 , Stanley Rd. Whalley Range, Manchester. 16 . $\mathbf{A}^{\text {Mtions receiver, }} 1.5-18 \mathrm{~m} / \mathrm{cs}$ in 6 switched bands. B.F.O and crystal phasing 110 -volt a.c., in excellent condition, with wiring diagram; \&20 or near yolts a.c., available.-Apply Mr. Stanton, ${ }^{2} 894$.
High Rd., Whetstone, N.20. Hillsde 2488. 2^{150} watt A.C. smplier (K.T.33c's in put choice of 6 tono pitches, stand-by switct, put choice of 6 tono pitches, stand-by switcb,
matchmaker out put transiormer, etc., 2 mics matchmaker output transiormer, speakers, completo with all leads and spare sct of valves, £60.-12. Hartland Court, Friern Barnet, N.11. Enterprise 1807.

โ9070 $\mathbf{N A T I O N A L}^{\text {ACBIX }}$ receiver, 10 tubes, Xtal \& 30 or ber, S meter. $10-160$ bands, 230 v A.C.,
oller; Canadian R103 6% car radio, as new, $\varepsilon 15$ or best ofler; A.P.W. 8345 reccivers, suitable television, complete as new with 6-EF50s, 3 diodes, 85 ; as above, but damaged, valves O.K., £2.Srkes. Oidfield Rul., Honley, Huddersfield. SPECIAL $581 v a g e$ offer-18-valve set, with S valves, $£ 2$ each, carr. 10/- extra: these sets have been stored in the open for a time and case and chassis are more or less rust, in good usable condition: 4 slug tuned air speed coils about 3 meters, and tuning condenser, 2 1.f. chokes, mains trans $(2,000$ cs $)$ h.y. metal reclifier and approx 150 res and cons. In addition to the above items, therc are switches, VCs, sockets, etc., which may be damaged or faulty. II' crate is required send $\mathcal{2} 1$ deposit. returnable; send stamped send addressed envelope for lists please. and addressed envelope ior lists pease.

TEST EQUIPMENT

INSTRUMENTS

MOST makes in stock, some on terms.-Write for details and list of radio and electrical spares new and ex-Govt.; to The Instrument Co., 244, Harrow Rd., London, W. 2 .
Cossoir double beam oscillograph, as new. $W^{\text {EE }}$ - Box 4515 . EE megger, 250 volts, new condition, ap.
[9047
proval, $£ 5$. - Box 4976 . TAYLOR model 90 universal meter; $\varepsilon 12$.-

D meter, surplus to requirements, as new
C. and in perfect condition; 295.- Sum
meraby Mill Lane, Margate. Siens [8873
PRIDGE in logther case, Siemens
$\mathrm{B}^{\text {RIDGE }}$ in lesther caso, siemens halek.
 $S^{\text {IGNAL }}$ generator, Typer E, Model 1, new. S cost 2220 . 2ell 215 - Moore, Northumber land Avonue, Berwick-on-Tweed.
A OP model M0, Weatonmerer 785 (20,000 27. Hillaborough Rd. Garrowbill.

LASKY'S RADIO

EVERYTHING FOR THE

 AMATEUR AND SERVICEMAN Condeniers. 2 mise. 350 v v. 1.11 each. $A_{\text {mid }}$
 16 mfd viv. 5. 59 each
59 59 each.
inld. 800 Mind. 800 v.
 750 v . w. (block oll nlle l) 76 each.
All vatuen mmall condens cre fruni All vatuen amall condensere fromi E jus. to Inrge sto
T5 x 12,
Speakers.

 fy lead, air or íron cored, 76 rnch, 14 -pair.
Wearito "p Conls. All ispuy in utock. Als, Il.
 Tinned Vaives. A few examjick tron nur extennlo whocke. All at B.O.T. Price, EF91, INK91, N1, U2, DAF9!, CBL3, CBL1, CLS3 10P14, 10Fs 10 F'
 $12 \mathrm{K7}, 6 \mathrm{~K} 7,6 \mathrm{K8}, 6 \mathrm{VG}, 42,6 J 7$, add Huadreds more, Let us koow your requiremiente.
We also have a large atock of maint transformers chokes, 0 /trans., coil packs, pick aps, eic., ef
All our goods carty our ancondifional kuarantere astisfaction or your money refunded. Send id stamp for our ourrent liat and balletin of Ex-8ervice goods.

LASKY'S RADIO

370, Harrow Road, Paddington, W. 9 'Phono CUNalughum 1879
Eours : Mon. to Sat. 9.30 a.m. 206 r-m. Thurs. half day

-COULPHONE RADIO

58 DERBY STREET, ORMSKIRK, LANCS Phone : Crmskifk 496. Grams : Couphonae, Ormstirk. NEW GOODS ONLY.
C.W.O. No C.O.D. Pont Free over 5 PRIMARIES for 200/30/50 volta. Univertal 4,5 and
 $350 \mathrm{~V} .300 \mathrm{mA} .28,.6 ; 450 \cdot 0 \cdot 400$. 200 mA

 I..T.e), 115 i- : 4 ur 6.3 v. 6 a. C.T. (Fitament), $17 / 6$
Auto (Filament), 4 v .106 .3 v , $\sqrt{2}$. (or vice versat, $13 / 6$
SMJOTEING CECKES

VALVE8
15 H .40 mA .3150 ohmo. $5 / 6$.
20 H .40 mA .425 ohm. $6 / 6$.
BVA an

tuagsiam
${ }_{20}^{20} \mathrm{H} .100 \mathrm{~mA} \cdot+25 \mathrm{ohm} ., 13 / 6$.
20 H .200 mA .150 ohnc., $22 / 6$.
30 H .200 mA .350 obra., $25 /=$.
OUTPOT TRANSPORMERS
Midget Power Pon., 5/6. sitd. Vaifr., with 0.T., 7/6
 for 3,8 and 15Ω. 22/6. Extra Heary Duty. 37: sPECLAL (to suthor's epoolncziton), for qualle ampliner, deacribed In April and May iasuea o "Tbe Wirel

$$
\begin{aligned}
& \text { cons, Coll, PACES, otc } \\
& \text { HRy } \\
& \text { Conirs. }
\end{aligned}
$$

WEYMOUTE TRF. COIIs. IS. and L., with cetw
 WEYMOUTE COKL PAOK8 C., $165 \mathrm{kc} / \mathrm{m}$, pair 11,6 SUPER PEEDER PNTT. Completoly aligmed, 36/6. Magic Eye. Completo with 0 vaives, 218 i8s. 1.7. TRangF. Midget. 18/9 pr. 8tandard, 17/8 pr. J.B. MDDGET 2-GANG CONDEISERS. 0005 L/TT:

 SUNDRIEB
LDNE OORD. 9 amp. 600 per fl., 2 m., $2 / 3 \mathrm{yd}$.
 4'8. CARBJA BESI8TOR8 (50 to is M Ω), t w

1 ш., 9 c .
EDDYBTONE SHORT WAVE OEAR.
ROMAC SUPER CAR BADIO. FIDOR PORTARLEA.
Send 2Jd, stamp for new 84-page Cataloge.

ROGRESS instruments, morlulated simnal Pther instruments.-Box 4522.518943 B.P.L. sig. gen.: new, model R.S.600, 100 2^{-3} vange unjersa] mrier with cabinet and VO - $1 \mathrm{C2}$, Durlicy Rd. Grantham 15gns. a
 Chirstead alley Rd, Coulstion, new, exAM. tested 18 /6; c.iwo-A. C. Steadman ${ }_{2}$ in herrmocouple moving coil milianmmeters

 Gort. surplus, new, in original cartons, 1 st

 bakelite case, zero set bcrew, dead beat. Govt
6urpus, new, in orikinal cartons, 1 gt grade: TEDVINGTOY ENGINFERING Co., High St
 high output, to handle every cope of signal
fautits probetracel on the spot in seconds,
plang, details, layout, $2 / 6$ from E. Bradley,

 meter indication desinned for specedy location of taults, measurement of tuning roil induc-
tance. mensurement capacitance. checking efticiency, rerial earth installations, Irequency mensurement 100 kcs to $20 \mathrm{mcs},{ }^{12}$ months
guarantec: price $£ 14 / 17 / 6$. -Radio Develop.
 W AVEMETERS, superb imboratory instrually controlled crystal oven, 9 valves, including crystal and heterodyne obcillators. mixer ani deadleat slages. (requency $15-2.500 \mathrm{kc} / \mathrm{s}, 230 \mathrm{v}$. 50 cycle, weight 1121 l . with crystal, valves. meter and circuit diagram, $£ 20$, less valves
 Wychall Rd.. Northfield, Birmingham. ${ }^{\text {I }}$.

NEW LOUDSPEAKERS

£6 6 cono, manufartured by Baker's Selhurst Rodio, the pioneer manulacturers of moving coil speakers since 1925, wide irequency range. even response, ideal for quality reproxiuction, fitted with angnet having an exceptionally high flux density in
in a class of its own.
in a chass on $118 / 6$. New Baker model 12.C single-cone 12 in p.m. speakers. built on the lines of the auditorium modol, suitable for public arl. dress equipront, acoustical output being very good even
£8/19/6. New Baker super power cinema p.m. speakers with $18 i$ in triple cone giving $^{\text {wit }}$ wide Irequency response free from objectional resonances speech is clcar and natural and
music is reproduced with exceptional realism, music is reproduced with exceptional realism,
ideal where power bandling capacity plus realistic reproduction is required; send $21 / 2 \mathrm{~d}$ stamp for leaflet giving details of above; also acoustical cabinet, designed to extend loud. speaker trequency range: prompt delivery per passenger train.
BAKER'S Selhurst Radio. 75, Sussex Rd. BAKER'S Selhurst Radio. ${ }^{75,}$ Sussex Rd.
Bouth ('roytion. J'el. Cro. 4226.
[9097

STILL MORE BARGAINS

Selected from our wide range.

RELAYS. Siemen's High Speed lab., relays in brass case on ebonite circular base with concacts. E3 each. G.P.O. Potarized relays fitzed concacts. in brass case with glass top and terminals, 45/-
Few relays with coils in good condition bur less contacts, and soiled, 20/
GALVOS. D.C. moving coil suspension mirror Gaivo, reflection cype of Tinsley 100 ohms sensimet 23 micro. amps per 1 inch of scale ac one metre, in polished case with glass front, EB iOs. Moving coil bridge Galvo, flush panel, 2 in . scale
$\mathbf{2 5 - 0 - 2 5}$, new. 75,leading makers, $05,05,1,2,4,2,1,2,2,4,10$, 10. 10. 40, 20. 20, with plugs. 40/

MEGGER. Evershed bridge megger with decade resistance box S.H. guaranteed. Shed Wre megge
RESISTANCES. Var, slide vic. enamelled 5 amps. suitable with $50 / 70$ vole dyname Charging circuits at 5 amps., 25/-each. As new METERS. Ironclad A.C. voltmeters, G.E.C.
4 in . switchboard, 0.60 volts, $45 /-$ Ammeters to 4 in . switchboard, $0-60$ volcs, $45 /-$ Ammeters to
match, $0-40$ amps., $45 /-$. Frequency meter $40 / 60 \mathrm{cy}$. Crompcon F.G. Ironclad switchboard, 50 volts 6 sin . $\times 6 / \mathrm{in} . \times 4 \mathrm{in}$. With lamp on top to A.C., 35 - extra. Ammeter to match, 0.50 amps., A.C., $75 / \%$ Volcmeter co march, $0-75$ volts A. 3 hin., panel with back connection, $130 / 260$ volts. $30 / \mathrm{F}$. TRANSRORMERS . Auto type, 230/110v. 85 wates $25 /=100$ watts $30 / \% 150$ watts $35 /-$. 350 transformers $230 \mathrm{v}, 120 \mathrm{v}$. 2 amps. $30 /-12 \mathrm{v}$. ${ }^{3}$ amps. 32/6. B.T.H. Transformer, 200/230/250v. 50 cy . inpuc 2 voles 20 amps . and 75 volts 6 amps.

DYNAMOS. D.C. 12 voles 10 mp . C.A.V. new condition: shunt wound, carbon brushes.
4. $50 / 70$ volt $D . C .10$ amps., shunt wound, ball bearings 1,000 r.p.m., 614 ; 30 volts 5 amp., 65 : 24 voits 40 amps. ${ }^{2}$ Cl ${ }^{\text {S }}$.

D.P.C.O. coggle switeh 250 v . 1 amp., flush panel, 3/3: 8-way Lucas switchbox. 3/6; 6-way, 3/-. enclosed cype, $21 /=24$ volt D.C. Solenoids, lift 14 lbs.̈̈llo.
SPARK COILS.
G.P.O., inin. to lin. coil, 6/12 volt operation, 25i-: large 4 in . coil on polished wood basc, in new condition, heavy concacts C12 10s. Mercury Interrupter, 110 voles D.C. ¢2 15s.
SPEED METERS. By A.T. Spcedometer Co., ,500 r.p.m., 4 in . dia., black dial, white figures and scale, $20 /$
BATTERY SUPERSEDER. 6 volts D.C. receivers, $5 \frac{\mathrm{ln}}{} \mathrm{in} \times 3 \mathrm{l} \mathrm{in} . \times 31 \mathrm{in}$., ball bearings model finish, 55/-
TELEPHONES. Wall type constructors' parts ex-G.P.O.. comprising cabinec 8 in . $\times 6 \mathrm{in}$. $\times 3 \mathrm{in}$. bracket mike, eransformer and condenser, mag bell, switch-hook and contacts, hand mag., ringer P.O. type receiver terminals and connection
diagram. 35/- per pair. wound, 25/-. A few similar machines, 110 v . or 220 v , needing repair, $12 / 6$, carriage $1 / 6$.
BATTERY CHARGERS. 230 voles A.C. for 6 or 12 voles car accumulators. Send us your enquiries and keep your car accumulator in condition while not in use.
MAGNETS. D.C. Electric magnets, weight 10 oz., lift on 2 volts 1 flb., 4 volts $31 \mathrm{~b} ., 6$ volts $4 / \mathrm{b}$., new, surplus, $7 / 6$ each. Permanent powerful flat bar magnecs, $2 \boldsymbol{i} \mathrm{in} . \times \operatorname{lin} . \times 1 / 8 i n$. , drilied 2 holes each end, and any pole pieces, $2 /$-pair. The wonder Midget magnets. Alni perm. steel disc. ; 5/8in. diam.. 3/8in. thick, with $3 / 16 \mathrm{in}$. centre hole, 3/6 each. Large stock of Horseshoe magnecs. Send for special Magnet Leaflec. "W.W."

Pl are includ pxtage far mail atd.

ELECTRADIX RADIOS
214, Queenstown Road, London, S.W. 8
. EE and hear the Wharicdale corner cabinet GH Grand Arcade Radio, Leeds, 1. Tel. 22175 Ticonal magnets. phragms, die-cast chassis, twin cone. -Broad cast \& Acoustic Fquipment Co.. Ltd. Brosd House, Tombland. Norwich 26970 [6435
\qquad VOIGT H.C. corner horn with bass chambe TTARTLEY TURNER 2 is (atest model VOIGT light twin unit with B.B.C. correc2. Rectory Gdan. Northolt, Middx.-Cooper, TJARTLEYTURNER energised, with recti er and oulput transformer: $£ 4 / 10 .-$ GOODAANS infoite bame, perfect, 908
 VOIGT light coil twin unit; H.C. corner unic: pertect, demonstration. £ 40. Boz 4970 .
VOlGT light twin cone unit in H.C Lorn, bass chamber and feld supply
unit; $£ 35$ or offer- 51 . Manchester $8 t$. VOlGT domestic corner reflector ondition twin cone unit ans rectifer, perfect hall Rd. Benchıll. Manchester. Kerand BAKFR super yuality 12 -inch permanent act, 15 ohms, complete with infintte bafte cabipet in the white. new. £6/10.-Box 4505 A RDENTE Regal snund system. specially S.A. 318A ampliger of $15 w$ output, 3 type MC FS moving coll microphones with lolding 12 in 1 type 524 4.channel mixer, 1 cabin type trunk, cables and connertions, slightly useu, just checked by makers and in 100% condioffered for quirk sile at £95-Apply for appointment to vicw. Challen. Omega Works. Eermitage Rd.. Finsbury Pk.. N.4. Sta. 2288. MORSE EQUIPMENT
1 ORSE practice equipment lor classronm or botb batt or main ons, audio oscillators lRadio, 14. Soho st. w] Ger 2099 [2291]
A I.L types of rotary cuoverters.
Anotors, battery chargers petrolelectric generator sets, etc. rotary transformers, input
$12 v$ dc. outnut 600 at 250 ma ; price $4 / 10$ $12 v$ dc. output 600v at 250 ras; price ea/10 each pett. post paid: J.A.P. No. 2A ebgines. 1.2 b.b.p. at 2.600 r.p.m., complete and ready for use, £l7 nell, ex works. Ward Lordscrolt
Works. Haverbill. Qinfrik Eaverbill $253 / 4$.
TARGEST and VALVES

1. the country. British and U.S.A. types. at Board of Trade prices: send for list (valves available), free, s.a.e.; valses sent c.o.d.: retailers not supplied.
GRAMOPHONE AND SOUND EOUIPMENT (JION SOUND SERVICE have recorders WIINKINS \& WRIGFT coil pickup, as new COIL pickup, Wilkins \& Wright; $£ 5$, unused. CX-9, Whitehall Gdns. Chinglord, E.4. [8937 WIRE recorder-immediate playback, wipeBRIERI.EY armature pickup Box 5020 . new, perfect, $£ 4 / 10$ with tone compensator, as MIARCONi model 239 radiogram. S.E. 18, £7/10.-Hunt, 169 Pettils Lane, Romiord TRANSFORMERS, tone control and filtar Clark, 30 , Lankland Crescent, $\operatorname{Circuils,-R.}$
 DREMIER "Super" M.C. microphone with recording trweker, $10 /=-$ R. E. Smart, Straggle thorpe Grange, Brant Broughton, Lincoln. VOIGT loudspeaker unit and mahogany rectifier unit and Voigt bickup with trans-
former and corrector; offers for the lot or separately; can be seen working.-Box 4972 PICK.UPS.-Lexington Senior with screened £S/10. Acos crvstal witb sapphire stylus, as new, \&2. Also Avo Universal Minor, per-
ect. \&6. -342 . Avleswade Rd. Salisbiry
B sional and armateur recording engineer and quality reproduction enthusiast: \because Sound Recording." the official journal, Vol. 3, No 1 ,
$2 / 6$ post free.-Details of the Association and membership application form Irom, Hon. Mem bership Sec., II. J. King 48, Mount View Rd.
N. C'hingloril. Iondon. E.4.
[SOSn

. 6
NEW G.P. 12 CRYSTAL PICK-UP
with permanent sapphire stylus
-was fully described in The Wireless World's recent article "Crystal Pickups - Basis of Design for Fidelity Reproduction."
This remarkable pick-up, which represents the ultimate in high-fidelity reproduction, is now available in limited quantilies through your radio dealer, price 96/- incl. P.T.

FREE ILLUSTRATED FOLDER describing this new pick-up may be obtained by returning the coupon below.

TO COSMOCORD LTD. ENFIELD, MIDDX.!
Pleage send folder of ACOS Pick-ups.
NAME
|ADDRESS

OPPQRTUNITES urano

Get this FREE Book!

"ENGINEERING OPPORTUNITIES"
reveals how you can become technically-qualified at home for a highlypaid kay-appointment in the vast Radio and Television Indusery. In 108 pages of intensely interesting matter, it includes full details of our up-to-the-minute home study courses in all branches of RADIO and TELEVISION, A.M. Brit. J.R.E., A.M.I.E.E., Ciry \& Guilds, Special Television, Servicing, Sound Film Projection, Short Wave, High Frequency, and General Wireless Courses.
We Definttely Guarantee

"NO PASS-NO FEE"

If you're earning loss than $\mathcal{L} 10$ a week, this enlightening book is for you. Write for your copy today. It will be sent FREE and without obligacion.

BRITISH IN8TITUTE OF
ENGINEERING TECHNOLOGY 384b. Shakeapeare House, 17/19, Strabord Place, London, W.l.

NFINITE Bafte corner deflectors, scienti fically designed acoustic chambers as re-catalogue.-Broadcast \& Acoustic Equipment Co. Ltd. Broadcast House, Tombland. Nor
$\boldsymbol{R}^{\text {ECORDING }}$ blank discs equipment and accessories, units, a complete culters, radio units, mixer units, a complete recording equipment for logue to University Recording Co in logue to University Recording Co., 113, Milton MA MATEURS
A MATEURS.-Your call sign renorded. A double-sided $10 i n$ record, 3 mins. playing time each side. 17/6, male or female voice, ligh quality, long lasting; 51 n sample sent

free.-Write your own scrips (o 1 . Grafton, 53 | iree. - Write your own scrips to 1). Gralton, 531 |
| :--- |
| Old Steine, Brighton. |
| 9076 | CORRECTION.

CORRECTION. C- Radio Linlimited, 16 , of Caraarvon Rd., Leyton, advertiscd price Model T2/1205/15, £6/15; Axion Twelve, 88/8, we wish to apclogise for any incon. OROFESSIONAL the mistake. 9016 PROFESSIONAL recording equipment, to cutters, trailer needles. etc., from stock; recording amplifiers, matching transformers, ribbon ing amphifiers, matching trnasiormers, ribbon and m.c. microphoues; full trade terms-Sound Dises (Supplies), Lta, 83a, Bold St., Liverpool. LEXINGTON D. Junior Mick-l1p, As new. perfect. $£ 3 ; 0.300$ micro-ampneter JR.13. zero, $£ 3 ; 12000-1200,300 \mathrm{~m} / \mathrm{a}, \mathrm{TX}$, Tl, with 3 L.T. windings; $20 \begin{aligned} & \text { m/a, } \mathrm{cx} \text {, TR, } \\ & \text { copies, }\end{aligned}$ tronics. radio, etc.: 1943-1946. offers.-Conway. 21. Cleveley Ave., Rochdlale. [8979 RADIOGRAM motors, auto changers play R ing desks, pick-ups, amplifiers, chnssis, abinets, speakers, accessories microphones, etc. rotatioand turntable. tetails on request drive motor and turntable; detalis on request: new lists avalable, s.a.e. please.-Radio 833 RADIOGRAMOPIIONE , units; including RADIOGRAMOPIIONE units; including on request; also radiogram chassis, cabinets, accessories: also semi-midget radio cabi nets; various colours, moulded bakelite; Rola 10 in speakers, $30 / \cdot ;$ 4-wave radiogram chassis. £14. inc. tax; 3-wave radio tuncrs. Radio Unlimited, 16 , Carnarvon Rd.. Leyton. Radio Unlimited, 16, Carnarvon Rd.̈ate. Callers. 272. Romford Rd., Forest Gate. 1 dise recording equipment and accessories precision built iraverse gear complete with hrst-class cutting head, we manufacture and specialise in sapphire stylii, our standard types fit the most popular pick-ups on the market and inc. a pusli-in model for light weight pick-ups; we manufacture specials in quantity to specificalion.-Technifon, I/ld. Qo Rnlorave Ril. Tonilon. S.W.1. Vic. 881 a S.H.E.F.I. moving coil pirk-up is now avail. D able for both home tracle agd export: it combines for the first time high fidelity with high output voltage. enabling it to directly replace normal moving iron pick-ups without any extra amplificatinn; it has an exception ally clean response with no undesirable reson ances, thereby retucing needie scratch. Price in walnut and black plastic finish, $40 /$ - each retail, including transformer. plus $10 / 4$ pur chase tax: wholesaic and retail enquiries in vited; illustration eent on request.-Brooks \& Bohm. Ltdi., 90, Victoria St.. S.W.I.
CHARLES AMPLIFIERS welcome lovers of recnrred music to their new premises Where their high fidelity amplfiers can be heard together with Lexington Connoisseut and Rothermel nick-ups and B and A.E.C Vitavox, and Wharlefiale speakers, B. and A.E.C acoustic chamberb, infle inflectors, etc. we like yout to bring bame denectors. etc. we like yon to brimg your owniamiar deted entirely to the hiph is service devoled entirely. one mingh Girlelity rom station: buse 73 49 stop at the roor St. Station, Charles Amplifiers, 1e, Palace Gate. Kensing COMPONENTS-SECOND-HAND, SURPLUS 1 UBFLIER paper conds., metal cased, 6midd, D 1,000 w wkg. $5 /$ - ea.; II.R.O. coil-packs, $50-100 \mathrm{kc} / \mathrm{s}, 100-200 \mathrm{kc} / \mathrm{s}, 15 /-\mathrm{ea},-$ Box 4968 . GOUTH-WES'T Lendon ainateurs, for your - Denco stonkist, and all other construc tors' components, call at Bervio Radio, 156 Merton Rd., Wimbledion. Trl. Libarty 6525

YOU'LL probably get it at Smith's, Edg - hare Rd. " Everything fo- the construc or, froun a $1 / 10$ watt resistor to a radiogram Cabinet; lowest prices, biggest variety.-Nea GPECIAL ofler! Complete ranes of 18005 $\mathbf{S P E C L A L}^{\text {nents offer Complete range of compo- }}$ sets, radio cabinets, ccil pucks, amplifiers, etc., sets, radio cauinets, ccil pucks, amplifiers, etc., Radio Supplies, 1oz. Turnpike Lanc, Horn. Radio Supplies. 103. Turnpike Lanc, Jorn.
[893. N.8.

Vompact and Inexpenslre
a thout sacridicing accuracy and reliability. Weighs only Ranges up to 20 megohms fuo vole of gencrator handle

CONTINUITY TESTER This Latest addjlion to ange is enclosed in a thoubled bilkelite case of sleaslag nppearance. Equipped with self-con Laloed dry battery. Specially designed rest apiles anso a "lent and carry" case in which the ingtru. neat may be used with out removal. Rnages:$0 / 3-0 / 30$ ohms. $0 / 30-$ $\begin{array}{ll}0,300 \text { olimas } 0,500- \\ 0,50,000 \text { ohms, } & 0 / 1000-\end{array}$ 0/200,000 ohms.
THE RECORD ELECTRICAL CO., LTD. Broadheath, Altrincham, Cheshire.

These high-quality precision instruments 200240 volts AC Type $5,100.250$ volts AC/DC Type 6, have a coverage of $100 \mathrm{Kc} / \mathrm{s}$ to $30 \mathrm{Mc} / \mathrm{s}$ in 5 ranges. Calibrated by hand agzinst a standard frequency accurate to 0.01%. Con structed in B.A. 60 atloy and finished black and cream. Price 14 Gns. Type 5 or 6. Immediate delivery.
Illustrated leaflets on application to

R.R.DEVELOPMEnT

LABORATORIES LTB
BARMARD ROAD•BRADFORD

THE "FLUXITE QUINS " AT WORK

> We once used to rouse up like men
> When the kitchen clock buzzed at seven ten,
> But this gadget you see
> Fixed by FLUXITE-and me
> Gets us up with a boom from Big Ben!

See that FLUXITE is always by you - in the house - garage workshop - wherever speedy soldering is needed. Used for over 40 years in Government works and by leading engineers and manufacturers. Of all Iron-mongers-in tins, $10 \mathrm{~d} ., 1 / 6$ \& 3 ;-

TO CYCLISTS! Your wheels will NOT keep round and true unless the spoles. are tied with fine wire at the crossings $A N D$ SOLDERED. This makes a much stronger wheel. It's simple - with FLUXITE-but IMPORTANT.

The FLUXITE GUN puts FLUXITE where you want it by a simple pressure. Price $1 / 6$, of filled, $2 / 6$.

"ntuatumum

FLUXITE

IT SIMPLIFIES ALL SOLDERING

Write of Book on the ART OF "SOFT" SOLDERING and for Leafers on CASE HARDENING STEEL and TEMPERING TOOLS with FLUXITE. Price 1d. each.
\section*{FLUXITE LTD.}
(Dept. W.W.), Bermondsey Street, S.E.I

$\mathrm{C}_{\text {byirgains. }}^{\text {LYDES }}$
BRAND new half-wave dipole aerial with reflector and crossarm approx. 6 metres for wall bracket or mast mtg., dipole git 3in. crossarm 4tt $111 / \mathrm{in}$, reflector 9ft 7 in with $39 f t$ co-axial cable and plug at $21 /$ each,
carriage paid; brand new Rl22f battery super. het receiver 5 valves, 3 wavebands, $30-300$ metres complete less batteries at $f 5 / 14 / 6 \mathrm{fl}$. carriage paid; brand new R. 1481 V.F.F. re. ceiver with 10 valves and stabliser, less power supply Inr $65-86 \mathrm{mcs}$. at $£ 9 / 14 / 6$, carriage paid; brand new Wheatstone Bridge test set al $50 /$. carriago paid; brand new AN-/ A1'. 1 -
C.R. unit at $97 / 6$; carriage paid, plis $1,000^{\prime}$ C.R. unt at 97/6; cearriage paill, juliss 1,000 s Clydesdale Supply Co., Ltd.. 2, Bridge St. Glasgow, C 5. 'rel. South 2706.
A MATEUR has for sale quantity componA ents, sorde unused, s.a.e. lists.-Axtell, 97, Iain St. Dreghorn, Ayrshire.
13. \&it radio tor radio components. 1 test 13 zeir and melers; trade only; stamp for

 To help break the monotons of these columns we offer over and fibove eversthing radio: MICRO-TELEPIIONFS, sell-energising, batteries required, work marvellously orer long distances; ideal for keeping in touch with the bedriddell without running up and down atairs; excellent alsn for intercommunication between shop and office, larm outhouses, etc. ,utdoors, only one wire is necessary-use earth return; these also make fine underpillow extenstou speakers, play the kids to slcep, or listen
to the end without disturbing the wife, $2 / 6$
(A A M condensers, escutcheons, transformers (x etc., to be sold regardless of cost.-Scad to Retail Saressed envelope for full particulara more Rd. Amersham, Bucks.
THLEVISION aerial equipment, 5 ty pes fully ashings all types aerials available, poles. brochures; acrials installed.-Wolsey Television Ith.. 87, Brixton Hill, S.W.2. Tuise Hill 1240 . G6y ${ }^{6}$, Western Gateway Headquarters for U radio equipment and information. Radio components in slock for immediate delivery
l.J. Chokes, $250 \mathrm{ma}, 15 / 201 \mathrm{I}, 100$ or 200 ohms $10 / 6 \mathrm{ca}: 500 \mathrm{ma}, 15 / 20 \mathrm{FI}, 80 \mathrm{ohms}$ (size $61 / 2 \mathrm{in} \times$
 $5 \mathrm{a}, 4 \mathrm{v} 4 \mathrm{a}$ 4r 4a, 10 v 1a, $30 /$ - cach.
 can 450 wkg (size 21 in $\times 2$ in $\times 1 / 8 i n$), with can $450 v$, wkg. (size $4+4$ med.. $3,000 \mathrm{v}$, wkg., fixing lect, $5 / 6$ each. $4+4$ med. 3,000
POTENTIOM E'IERS, wire wound, 10 watt rat POTENTIOMELERS, Wire wound, 10 wat ing, 1,000 to 50,000 ohms flong spindie), trol, $2 / 6 \mathrm{ea}$. Above are selections from our extenslve range. S.a.c. will bring you winter catalogue showing ninety-eight spectal olfers. ARTUUR IV, RADFORD, G6YA, 28, Bet minster Pirade, Bristol. 3. Tel. 64314.
L.OON Selenium rectifiers by S.T.C. and
[9040 Le Westinghouse, 5 lypes, 30 m.a. to 220 m.a. 50 to 360 rolts, all new tested stock, substantially discounted for quantities.-Apply for full technical data and prices, Partridge, Wilson \& Co. Ltd., Davenset Electrical Works, Leicester. wires ensmelled, tinned $[8120$ COPPER wires, enamelled, tinned, I,itz, screws, nuts, washers, soldering tags, eyelets: ebonite and laminated bakelite panels, tubes, coil formers: Tuinol rod; headphones, flexes. etc.: list s.a.e.; trade supplied.-Post Radio Supplies, 33, Bourne Gardens, London. E.4. GOVT', surplus components, meters and creenerl fex etc., meters from 500 microamps to 50 amps incl., R.F. types; vols meters. etc., 40 varieties from $2 / 6$ to $30 /$ each; etc., 40 varieties from $2 / 6$ to 6332 A . $34 /-\mathrm{A}$. M output tester, $25 /=15$ watt amplifiers (12v), $88 / 10$; all $25 /-i \frac{15}{}$ watt amplifiers (12v). E8/10; all carr. paid: s.a.e. for barkain list-Hoyle, 320 , Dewsury Rday ELECTRONIC PRODUCTS, UNIVE. Marylebone IIigh St., Iondon, W.1. Tel. No. Wel. 4058. Precision-built gearbox dial drive units, giving 2 ratios, 8.1 and $90-1$. Entirely free from backlash. Few only. $18 / 6$ post free. Send s.a.e. for particulars of our high-performance superhet tuning units. Special receiving or transmitting equipment constructed to specificstion,
< ITS of radio receivers from ep/8: 4- sud

1. 5-valve, new materials. table models, semi-midget; our latest kit-Wylwyn Star 1948 has connections for gramophone pick-up, extensions to loudspesker, A.V.C., 6 hours aver age time for constructing; full details, dis age time with each kit: c.w.o. or c.o.d,-Ishergrams wools, Reme Ifouse, 81, Plungington Rd., woods, Reme IIoute, 81, Plungington Rd..
Preston. Tel. 3348 . Estd $1936 . \quad[6788$

Model RF103

10 VALVE ALL-WAVE SUPERHET

RADIOGRAM CHASSIS.

SPECIAL FEATURES

* 10 VALVE CIRCUIT.
\star R.F. PRE-AMPLIFIER
* WAVE BAND EXPANSION.
\star LARGE GLASS SCALE
$\star 3$ Stages A.V.C.
* TREBLE LIFT CONTROL
(Operates on both radio and gramophone.)
* PLUS 6 db . BASS LIFT ON GRAMOPHONE. (To restore bass cut on some records.)
* 10 WATT PUSH-PULL OUTPUT

To export buyers we can confidently recommend RFl03 to any firm abroad who contemplates making a high-grade Radiogram or Console radio receiver.

The lively short-wave performance coupled with the excellent quality reproduction ensure an outstanding performanca.

We will gladiy make any aiterations to the specification to meet individual requirements.

To home buyers demonstration model now available to interested callers to hear, and technical specification now available on request.

It is hoped that a number (very limited unforcunately) will be available for early delivery.

The above model is for A.C. Mains. We also have a similar model Type UNI 103 for DC/AC Mains.

WARLTERS ROAD, HOLLOWAY, LONDON, N. 'Phone : NORth 3213

6－Valve A／C MAINS R／G CHASSIS， 15－50，200－600，540－2，000 Metres with TUNING INDICATOR，TONE CONTROL

14 Giss．plus P．Tax．
Also available as tuning unit feeding push－pull amplifier．Blueprints can be supplied for home construction if desired．

Send $2 \frac{1}{2} d$ ．stamp for full illustrated lists to
THE TELERADIO CO． 157，FORE STREET，LONDON．N．IB Toť．： 3386

MIDLAND INSTRUMENT Co．
 OFFER GOVT．SURPLUS STOCK

ELTHINATORS，200；250－v．A．C．，output 120 F ． 30－ma D．C．，Bited peon stabiliaer，braad new．40＇－．MOTCRS，fitted centrifugni punp， 12／24－v．A．C．／U．O，for Haulds，brand new， 35ic CASIEA cmirols，fited $12-v$ motor， clock＝ork ercapement，solenoid，etc． $20 / \mathrm{F}$ ． Dlto，brand aew，in wood cases， 20 －EXO（2），VRG7 JNITS，flued 11 －vaives VRawA（4），CVo（2），VRGI （2），VK92（2），VRG－，also relays，var－condo．，cbokes，
 a－v．and $120-\mathrm{v}$ ．oneralina，ideal for microphone pick－apd or loudspeaking inter coma．，with thodiocation
 Thic PANB，12－v．A．C．／D．C．，poweribl hingt，brand now，25／－AERRAL VARIOMETERS，No． 19 get． $3 / 6$ ． ATTENDATCES，13pe 17，316．SELECTOR Switches， 12／24－v．Lmpulsing，operates Yaxiey suitch，3／6． FLASEER MOTURS，TYPE＂E，＂12／24．7．Meared motor，conlact brraker．sinppresor，elc．，brand new 20／－．COMHECTCRA，SC／430，bakelite 2．may．4d． buxes of 50,126 ．JONTR FLUGS，with sockels to mt ．6－wryy，2＇6：10－miz，3．6：12．way， 46. ALTIIETERS，aneroid barmmeter movements，frand dew，boxed． $25 / \mathrm{F}$ ．SPARAK rembler tad cond．approzigo range 1 to 9 －mel 12／8．Repervira sex Elted 5 －ralves，vuperiset， $2-\mathrm{v}$ and $120-\mathrm{F}$ ．battery operarlon，Muthead dialo，a very and $120-7$ ．battery operalt，brand new， $87 / 10 \%$ carrlage $10 /$－extra cJntactopg mater type l，a blgb－grade clockwork rnovement，giving 2 －lyiputses per $\mathrm{yec} .$, brand new， 25＇－．Remote conenctort for ebove，120－tnpalses or 1 －rev．．etc．，12，8， $35 /=$ the two instruments． GAID GHERATURS，Rencratea G－v．al BAmp． complete Filh kandle，brand now，30／－，cut－out for anme．If required to charge ecemmulatom．5／a extrs． GOTOR GERERATORS（D．C．dनnmmon），12．r． 500 watt， $30 /=$ ，carripe $0 /-$ extr．Owher voltage and wattage output generator in stock．Alwo hundreds of other Interenting Radio，Fiectronle and Mechanical temi to ofter．send for owr carreat kots， 8．AL Orders over 30／－post－paid，carriage extra．Note jorrea
80／－
Moorpool Circle，Birmingham， 17 Tol．：HARborne 1308 or 2664

M If ormons teitgear resistors：fiype if thic get，innmous tesitgear resistors：fype A mide
 1.000Ω
1.500 ？ 1．500n 15a，5／3．Also 5w R．M．A．roted
 ，in one slider， 50 ，100，150，200，250 2 only min one．
$1 / 9$
$1 / 20$.
FloM Mortons，13，Camden Rd，Wallham Cow，London，E．17，＇rrade supplicil．${ }^{[17}{ }^{[8862}$ \checkmark kes，perincability trimmed，Albion coil packs， 3 or 4 warebands，adjustable iron dust ores，complete with circuit and lest sloeets rom 36；6；dials to matelh，3／6：reramic 0.3 droppers，5／6；Summersby high gain coils，at msiable dust cores．low loss formers，
 c．o．d．over \＆il postare 6il extra．－Castle order or $\mathbf{N E W}^{\text {EW }}$ STC sclenium rate．retificrs． connected．damp－prool finish： 1781.5
 all＇＇rost 10d．Hicary duty type， 7 in sq．A

 Tor all valve－type chargers．－Pcarce， 66 ．，
Percs．St．，London，W．C．（nr．Angel ：，
$\mathbf{R}^{\text {ADIO companents．}} 50$ brand new useful R components to a list price value of $£ 20$ for only $50 /-$－our ansortment includes P．O standard relans，air dielectric condensers sclenium rectifiers，wire wound potentio
meters，transformers，chokes，electrolytics meters，transformers，chokes，electrolytics jacks，insulators，signal lamps，plugs and sockets，tag pancls，i．f．transiormers，r．f chokes，block condensers，etc．，etc．：our pur chnse of a complete Ministry of Supply store makes this unprecedented offer possible：order a sample parcel and come back for more． M．o．S．．24，New Rd．．London，E．1．［8745「ELEVISION spares！To constructors nents：CRMi ${ }^{\text {n }}$ good selection of compn masks．£1／2／6；E．K．T．trans．，from £3／2／6 locus and scanaing coils．line output trans． RF coilformers，$/$ in，threaded with dus iron cores（adjustable）．EF50．EA50，EL， 38 だ小45．Pen46，AC5／pen，AC6／pen．T41 U21 SU2150，etc．，all at manufactureib lis prices：all caps of television cancicasers 1.000 racio ratwes ior lists．－Porritl，13，Wastdale Rd．，S．E．23． HARRY JAMEA PRODUCTIONS， 270 specialists，cod．Er Elec specialists，cood．or cash with order．Euec
trolytics，new not W．D．surplus，B．I．Iunts etc．： 8 mid blocks， $3 / 6: 16+8$ blocks． $6 / 6$ $8+8$ can， $6 / 3 ; 16$ can， $5 / 6 ; 8 \mathrm{mfd}$ B．t．tubu 1 ar， $4 /-; .25 \operatorname{mid} 25 v, 2 / 2$ ．TR．F．chassis $4 / 6$ ：chokes，midget $5 /-$ ，standard $7 /-$ ：T．R．F coils．M．\＆I．．． $8 / 6$ pair：coil packs，i6－50 200．590，800－2100，complete with trimmer switeh，etc．mounted on one unit． $32 /-\mathrm{c}$ con densers，1，．01，．05， 500 F 8d cach：variabl $\begin{array}{lll}2-g a n g \\ \text { 2．} 0005 . & 12 /-\% \text { with trimmers．} 13 / 6\end{array}$ loudsneakers， 5 in P．M．， $19 / 6$ ；6\％in energised 1．000ohms，29／6：8in P．M．， 25% resisiors， 1,0000 mat 6 d ， 1 walt 9 d ：valume controls，innc spindle．W／S $5 / 6$ ，L／S 3／6；transformers． 350 － spincle，W／S $5 / 6, \mathrm{~L} / \mathrm{S} 3 / 6$ i transformers， $350-$
0.350 British or American heaters． 0－350 80ma Britigh or American heaters． 5．7－Din and Octal．7i：Amplicnol type，9d：
 voltage droppers，2a $1.000 n h m s, 3 / 9 ; 3 a, 800$ ohms，4／9；line cord，3core，3a，9d it． Americs C．o．d．Larke stocks of British and American sa．e．for lists．
［8851 rPPEAKER trans．tapped output．ultra－ W midget，5／\％midget 5／6，Blandind 8／： P．P．output（ 6 L 6 valves．A／A load 6，6no－ ohms），output 7.5 and $150 h m s$ ． 21% P P． ohms），output 7.5 and $150 h m s$ ． $21 /:$ P P．
moriulation trans．for 807 valves．alldio power moriulation trans，for 807 valves，andio power
30 watts， $2-1$ ．at $12 / 6$ ；chokes，ultra－midget 30 watts， $2-1$ at $12 / 6$ ：chokes，ultra－midget
a0ma $5 /-$ midget $50 \mathrm{ma} 5 / 6$ ，standard 100 ma aoma $5 /$ midget $50 \mathrm{ma} 5 / 6$ ，standard 100 ma 8／6；hv．तitty $15 n^{\prime 2}$＂nnma 12＇6：＂Rimn＂tun． ing assembly assembled and fully wired for s．m．l．waves On chassis，Jial，pointer．I．F．s coils， pariders，etc．Beries heater wiring for use with fk8a． $6 k 7 g$ valves．complete．factory trsted and aliened，with circuit．E5：5v superhet．fullv drilled chassis， $111 / 2 \times 51 / 2 \times 21 / 2 i n, 7 /-$ ；Wevmouth mideet i．c．I．F trans a6s Kcs．brand new， Dr．18／9：standard I．F．trans．，pr．15／－：ditto T．F．s 2Mes，each 2／－：M／L t．r．1．cofls with roartion．circuit．pr．7．／6：M／f，l．c．t．d．t pr 10／6：SML，מer \＆osc，pr 10／6：sleeving，all colours． 1 mill $35 / 40$ vard reels，1／6：twin variable resistancp． 300 ohm ．I amn 25／－． Yaxley tvpe．3－nole．2－wav $2 /$ annle 3 wa 3／\％4－nole 4 －wav $3 / 6$ ；nice twne DPDT． $2 / 6$ ： onmprehensive lists n onthlv： $21 / 2 \mathrm{~d}$ stamp $t a-$ quirles：poptago extra all orders．
don E ．Tel $\mathbf{~ 2 6 5 , ~ W h i t e c h a p e l ~ R d . , ~ I o n - ~}$ don．E．1．Tel．Bishoprgate 5907 ．
［8799

Type T．W．Wire Wound

Rating	－ANGES
5 Watts Max． （linear）	$\left\{\begin{array}{l} 10-100,00012 \text { Max. } \\ 100-50,0 c 0 \text { (linear) } 2 \text { Max. } \end{array}\right.$
$\begin{gathered} 3 \text { Watts Max. } \\ \text { (graded) } \end{gathered}$	$\left\{\begin{array}{c} \text { (graded) } \\ 100-10,000 \Omega 2 \text { Non. } \\ \text { inductive } \end{array}\right.$
Type S．G．Composition	
1 Watt Max．	2,000 ohms to 2 megohms

CHARACTE NISTICS ：（both types）linear． log．s semi－iog．．inverse log．，non－inductive，etc．

FULL DATA FROM

FELIANCE

Manufacturing Co．（Souctiwark）Ltd． Sutherland d．，tigham ill，London．E． 17

Telephnre tar sw d 3245

GOVT．：URPLUS，UNUSED

CONDENSERS of all types

We can offer．FOR IMMEDIATE DELIVERY from very generous stocks，a wide range of ultra－high quality fixed paper Condensers， from． $001 \mu \mathrm{~F}$ to $8 \mu \mathrm{~F}$ ．Also STOCKS of small，genuine MICA Conden－ sers from 00001 （ 10 pl ）to $.01 \mu \mathrm{~F}$ （ 10,000 pif）．Prices are exceedingly moderate．
Enquiries are invited for manufac－ turers requirements，wholesale and export only for bulk quantities，and for scheduled de－ liveries over a period，as required． Condensers of close or very close tolerance can be supplied within about one week．

Please request our 4 dage bulictin CONSEVEN Olll4）

CLAUDE LYONS LTD．

180，Tottenham Couri Rd．，London，W． 1 and 76，Oldhall St．，Liverpool 3，Lancs．

PRECISION TRANSFORMERS

Impregnated High Grade Transformers 2% tolerance. Supplied in all voltages. Special list on application.

ALL NEW PRODUCTS

HIGH "Q" CIRCUITS FOR DISCERNING AMATEURS

Illustrated catalogue $6 d$. post free.
(A. A. RYALL, 65. Nightingale Lane, LonGe don. S.W. 12.-Mail order only. postages
extra, c.o.d. \&i or over, please send large envelope lor our full list; U.S.A. mako metal cased 500 v tubular 0.1 mil 7/6 dozen: Silver

 dozen:
volume controls, 10,000 medium spindle, $1 / 6$ $250,0000 \mathrm{hm}$ short spindle. $1 / 6$: Bar type 3 gang, 0.0004 ml hhort spindle, 5 ;- Bar type 4 geng $0.0004 \mathrm{mf}, 5 /-$; Kesistors, $1 /$ watt, !watt, 100 ohms to 2 meg level assoriment, $40.5 / \%$;
plastic group boards clrilled. less tass 9 w , types, 3-1/6; Switches SB.2P. minlature. $2 /$;
3R.2
6w, 5 . pancla, 5 -way with 25 ml and threc res., $1 / 3$; Twelveway group boerds with 9.1 watt and 4 '
watt res., $2 /-;$ all new; twenty types in stocl Octal plugu, cap and iocket, 3-2/6, with tags 3-3/-: high resinlance "phones with sponge ear
pads, with good class microphone all wired tat pads, with good class microphone all wired into
flug, rubber padded, plug type $201 / 10991$, $0 / 9$ pair: Metal boxes. black finish wlth guarter ioch paxolin panels, fixing lugs and
corner sockets, size $81 / 2 \times 71 / 2 \times 31 / 210$ deep, $6 / 9$ cach completer Internetional Octal valve Molders, Paxolin chassis type, $4 / 6$ dozen:
Melal-cased tubulars, 0.5 mf , 350 v , at 71 d C ., vire ends, $3-2 / 6$; Filteen relaya in carrying MINLFACTURERS; Mu\&c stocks all ondrascra, close iclerance resistors and all tona, valve bolders. potentiometer glass cartridge fuses $11 /$ in; suppliers to learling manufarturers:
 D bank 20/- each: toggle switches, telephone drks, press switches, 20 -way tag boards, E.S ley type switch, 3 -pole 2 -was. each 18, Yax dozen; voltmeters, 0.40 ampmicters, $0.50,151$ ner pair; condensers, 8 inld 700 volt, $6 /$. each sers, $1 \mathrm{mld} 250^{\circ}$ volt, $6 /$. per dozen; fotar swliches, 5 -section. 10 -pole, 15 /. each: 10 section. 20 -pole, 25% each: 0.0003 tuning con densers, $3 /-$ each: relays, 200 ohm, 3/, each
delivery by return.-Particulars, II ford, Box Trecs Mill. Wheatley, Malitax, Yorks ITilTh RADIOCRAFT, Lti, The Leicester Specinlists, offer from their comprelen-
stock: Woden de luxe potted output Lransformers, pri $7,000 \Omega$, sec 3.15Ω, 25 watts, 29/6; do., potled smoothing choke to match, 4-pin coils, 5\% et of 3 Headphones brand new Ericsson 120Ω, $12 / 6$ pr; do., Ulah, Chicago 240Ω, luxury job, 155 i, pr. i tuning
condensers, 160 p
3 -gang, ceramic insulation. condensers, ${ }^{160 \mathrm{pF}} 3$-gang, ceramic insulation.
Vingrove \& Rogers, $7 / 6$; do., 00053 -gang 7/6: 6ingle gang 100 pF , 3/6. Neters, 3 in flush type, $0-100$ microamps ($10.000 \Omega / \nabla$), $21 /-$ $0.20 \mathrm{ac}, 12 / 6,10-0-10 \mathrm{~mA}$ dc, $12 / 6 ; 1$ i-01ma
de, $12 / 6 ; 0-20 \mathrm{a}$ dc, $15 /-; 350.0-350$ millivolts $\begin{array}{llll}\text { dic, } & 12 / 6 ; & 0-20 \mathrm{a} & \mathrm{dc}, 15 /-; \\ \text { de, } & 15 /-; & 0.500 \\ \text { microamps de, } & 250 /-: & 0.100 \%\end{array}$ modulation (1mA isd), $25 /-; 2 \mathrm{in}$ square flush type, $0.1 \mathrm{~mA}, 25 /-50-0-50 \mathrm{a}, 7 / 6 ; 0.20 \mathrm{v}$ dc, 12/6; $0-.5 \mathrm{a}$ r1, 7/6: $0-3 \mathrm{a}$ II, $7 / 6$; $11 / 2 \mathrm{in}$ fush lype, $0-500$ micronmps, 7/6. Bargain parcels: Service type multi-way plugs and sockets, 12
 asstd., 10/6; 100 asstd., $£ 1$. Satisfaction guaranteed or money refunded without quegtion. Latest lists free on request. Trade sup-plied.-Frith Radiocralt, Lid., Leicester. Tel. 58927.

THE N.R.S. "Overseas 5," 5 -valve 3 -wave 1 superhet assembly for ac mains, $£ 6 / 17 / 6$, universal model \&6, consisting of all main components. factory mounted on chassis, only small resistors, capacitators required to conplete, valves, speakers and highly polished peneered cabinets available; send postage full specificallons; component bargains: Selenium metal rectifiers, very compact. 250 V 45 ma $5 /-350 \mathrm{v} 70 \mathrm{ma} 8 / 6$; filament translormers. ideal converting midgets to ac, 6.3 v 1.5 amp , $12 / 6$; standard shrouded mains transformers. input $110-250 \mathrm{v}, 300-0-3006.3$ and 5 y output. 27/6; superior permeability-tuned i.f.s, 465 ko/s. 13/6 pair; high-tux p.m. speakers, 5 in, less trans., $17 / 6$, 61/in with $24 / 6$, 8 in R. \& A. less $21 /$ - with $27 / 6$; revolutionary ne iron-cored coil packs, unusually compact. 33/-: immediate sale despach 0.7 Avo instruments, Pullin ton multimeters, $\mathrm{co} / \mathrm{do} / \mathrm{ohms}, 10 \mathrm{cms}$ Foler 0.0005
 25mid blag 2/3; send postage for spectal
 $\begin{array}{llll}\text { N. R } & \text { S., } \\ \text { live } \\ \end{array}$

GALPINS

ELECTRICAL STORES
408. HIGH STREET, LEWISHAM, LONDON, S.E. 13
Phone : LEE GREEN 0309
TERMS : CASH WITH ORDER (NOC.O.D.) EX-GOVT. (GEC) ELECTRIC FANS., 12 volts AC/DC laminated field, complete with 5 in. impellor. New boxed, 25/- each, $1 /-$ posc. Transformer to suit 230 volts input $10 / 16$ voles at 4 amps. output, 32,6 each.
MAINS VARIABLE RESISTANCES. EXGove. (new) slider cype, 450 ohms to carry 35 amps., $30 /$ each 4.000 ohms. 25 amps. 60 to carry it amps., $27 / 6$ each : 5.7 ohms 8 amps. $32 / 6$ art type 2,700 ohms to carry .27 amps., $30 /-$ each.
EX - GOVT. (NEW) MAINS TRANS. FORMERS, $200 / 250$ volts 50 cys. 1 ph. input $525 / 0 / 525$ volts $150 \mathrm{M} / \mathrm{amps} .6 .3 \mathrm{v} .5$ a., 5 v. 3 a. output standard rating, $35 /$-, post $2 /$. Mains Smoothing Chokes, 10 Hy . $150 \mathrm{M} / \mathrm{amps}$. 180 ohms D.C. Resistance, 8/6 each. Ditco, $100 \mathrm{M} / \mathrm{amps}$. 5:6 each, post 9d. Smoothing Condensers (oil filled). 4 M.F. 1.000 volt working, $3 ; 6$ each. All the above can be offered in large quantities). Please write for special quotation.
EX-R.A.F. MICROPHONE TESTERS (new). These consist of a FERRANTI 0 to 450 Microamp 2din. scale meter shunted to I.M/A incorporated Westinghouse Rectifier, the whole encased in polished teak case calibrated at present 0 to 10 voles, $32 / 6$ each.
EX-R.A.F. POWER UNITS, TYPE 225 (new). Containing the following components: 3-V.U.II Rectifier Valves, 1-5U4G 2-EB 34s, 3-Multi Contact Relays, High Voltage Condensers. Chokes, Transiormers, etc. To clear, 651-each.
EX-R.A.F. ROTARY CONVERTORS, D.C. to A.C., 12 voles D.C. to 220 volts 50 cys. I ph. A.C. at 100 wates, 85 i- each. Ditto. Admiralcy Pattern, 110 voles D.C., Inpur 230 voles A.C. output at 200 wates, $4 / 2 / 10 /-$ each. C/F Ditto, 220 volts D.C Inpur, same output, 615 , C/F. Another, 24 volis Input, same output. 100 volts 50 gys. I ph. at 300 watts, $\mathbf{E} 3: 15 /-$ each, C/F.
EX-R.A.F. CRYSTAL CALIBRATORS UNITS. Type 18 R.A.F. serial No. 10a/15237. These units contain $100 \mathrm{~K} / \mathrm{cs}$. xstal 2-EF 50 valves and numerous other items all new and unused, 35/- each.
SPECIAL OFFER METERS, ALL NEW BOXED. Moving Coil First-grade Instruments, 0 to 20 voles, 10, - each, or 3 for 25!-: 0 to 40 voles. $12 / 6$ each : 0 to $10 \mathrm{mps} ., 15 /-$ each ; all 2 in . scale. 0 to 25 volts A.C. calibrated 50 cys., 25/- each; 0 to 4 amps. Thermo Coupled, 251- each: 0 to 3,500 volts Electrastatic, $35 /$ - each, all 2 ifin. scale. MAINS TRANSFORMERS (AUTO WOUND). Volvage Changers rapped 10, 20, $25,90,130,150,190,210$, and 230 voits, all ac 1.000 watts, a combination of 34 voltages can be obtained from this Transformer, new ex-Gove. stock, 5 Sillo each, carriage 5/-. Mains Booster Transformer, capped $0,6,10$. 19, 175, 200, 220 225,240 , and 250 voles at 1,500 wates (new ex-Gove.). 55/5/- each, carriage 5/-. Another 200 voles input 240 voles output at 2,500 wates, 67/10/\%, carriage 7/6. Another 2 to 1 ratio 110 volts input 220 volts output or vice versa at 4,000 watts, $412 / 10 /-$, carriage $10 /$. Another 230 volts input tapped output $40,41,42,44,46$ 47. 49, and 52 voles at 100 amps., 115 each, Carriage 10/-: the latter two are double wound. Another auto. wound, tapped $0,110,150,190,210$ and 230 volts ac 1,500 watts, $\varepsilon 6 / 10 /$ - each, carriage
$5 /$. Ditto, 2,000 watts. $\mathbb{7} / 5 /-$, carriage $5 /$-.
EX-NAVAL CATHODE RAY RECTIFIER Conirs. These units are new and weigh 90 lbs. controls, chokes voltage condensers, 15 volume controls. chokes, approx. 100 rasistances and condensers all coloured, coded or marked, valve and zube holders (no valves). transformers are included but are for 500 cys ., price to clear, 42/6
each, carriage paiul.
MAINS TRANSFORMERS, EX-GOVT. All 50 Cys. inpur 230 voles input $500 / 01500$ volt at Another 50 voles at 30 amps. ouepuerriage $3 / 6$. Another 50 voles at 30 amps. ouspuz, 75/- each
carriage $6 /$. Another swo L.T windin
 $27 / 6$ each, carriage 3/6. Another 4 V . 1 a outpur $80 \mathrm{m.a}$. $12 \mathrm{v} .1 \mathrm{la},. 4 \mathrm{v}$.2 a. outpur, $70 / 0 / 700$ voles

" Q" MIDGET COIL PACK, Sire only $31 \mathrm{in} \times 2$ 2in colls Wound on Polgatrene formers. wave.change fritch, trimmern, etc. Three ware band for $\downarrow 65 \mathrm{k} / \mathrm{ca}$. auperhet operntion. Allgned and remby for use Complete with aulable 5 Valre S'Het rircuit. A deflitic advance in Coll construcionn. PEJCE ONLY 38. Other 3 Wave Superhet coll packa in slock include Wearite. Wermauth and Atkins.
 W1-pr. Weyrnouth 18 日 pr.
and can be eupolled at 3^{\prime} - eachange in kept in atock
VALVES. We can definitely eupply per return.
I8s and IRS at 1510 . 354 and IT\& at 14 -each. We also bave to otork many difficult typen, including 33L6GT, DEAG, 257G, GSL7, 6SSC7, 5 YBGT. 128A7 12SK7GT, 12sQ7CT. 19KEGT, 12K7GT, MKTt 8 pin, ete., ete. All at current contrulled prices.
 lials. Tu mateh 2 , t, B or 15 uhm apeech coll. 18 . each.

A BTAMP WILK BUING OUR LATEAT
CASH WITH OHJER, OK C.O.D. (over \&I).
5, HARROW ROAD, W. 2
PAD 1008:9

PITMAN Hadio Hools

CATHODERAYTUBE HANDBOOK

By S. K. Lewar, B.Sc Sets out the basic principles of design, construction and operacion of the cathode ray tube. Secend edition. 6s. net

thermionic valves in MODERN RADIO RECEIVERS

 By Alfred T. Witt\%, A.M.I.E.E. A special handbook for all engaged in commercial radio work. Second edicion.10s. 6d. ne:

A DICTIONARY

OF ELECTRICALTERM8 By S. R. Rozat, M.A., A.M.Inst.C.E, A.M.I.E.E. A handy guide co electrical engineering rechnology, including radio communicacions, tourth cdition. 123. 6d. net
WIRELES8 TERMS EXPLAINED By "Decibel." A helpiul zuide to the technical terms used in books on wireless and in manufacturers' catalozues. Second edirion

3s. net

Sir Isaac Pltman \& Sons Ltd Parker Street, Kingsway, W.C. 2

SUPPLIERS of high-grade radio components including television and high fidelity radio equipment; all tspes of radio and electronic apparatus built to your specification: largo stocks of close tolerance resistors.-Rogers De-
velopments Co., 12 , Macclesficld. St W. velopments Co., 12, Macclesficle St.. W.l. QELENIUA metal rectifiers. charger kits,
 12 y 3 amp selenium rectifier with 50 -watt transformer aud ballast bull, for $2 v$ en $12 v$

 bulb for $2 v$ 6v eharger, $33 /-1$ billast bull for $2 v$ to $12 v$ charger, $35 /-12 v 4$ amp rectificr with
2 v to 12 v charger, $62 /: 12 \mathrm{v} 6 \mathrm{amp}$ rect. wilh 2vewatt rans. and baillas bulb for 6 v , 12 v charger, f5; trickle charger $2 v$ rectifier with charger, for $2 v$ trickle charger, $13 / 6$; heary duty clarger kils for small radio store transformer, selenium rectifer, ballast uulb, no ammeters or rheostats neoded, for 1 to 20 celfs amp, $95 /-$ garanteed one year. lectifiers onty, 12 v 3 amp S.T.C., $21 /-12 \mathrm{v}$
 amp. $32 / 6: 12 v{ }^{2}$ anp, $12 / 6 ; 24 v a 4$ ampl $\begin{array}{ll}\operatorname{amp}_{n} \\ 42 / ; 6 \mathrm{v} & 0.5 \mathrm{amp}, 5 / 6 ; 6 \mathrm{v} 2 \mathrm{amp}, 9 / 6 ; \text { also }\end{array}$
 seleninu, $250 \mathrm{v} 60 \mathrm{ma}, 9 / 6$; ditto brictuce 100 ma eliminator 16,6 : $110 \mathrm{v} 60 \mathrm{ma} 9 /-\mathrm{i}$. 120 v 20 mit $13 / 6$; instrument rectifiers, 5 ma , $12 / 6$: erystal diocles. 2/6; Rola 8 in P.M. speakers, ess trans., $17 / 6$: Rothermel Scnior bakelite pick-ups, 52/6; Listraphone m/c mikes. 58/6: 80-watt fluorescent ihokes, 230 v , 19/6.Champion, 43, Uplands Way, Loudon, N. 21. Tel. I-ab 4457. Uplands Was, L9170 CUPREM1: RADIO, 746b. Rornforil Rd. S Manor Park, Jondon, E.12: 2-gang 000.5 condensers with leet, 9/6: line cord, 20/- doz. yds.; Lubular condensers, $0.1,0.01,0.05,5 / 6$ doz.: 8 mfl can or cardboard, $39 /$ doz. can type 16 mid., $4 / 3$ ea. $16+8 ; 8,8+8+8,7 / 3: 24+8,7 / 3+8,6 / 54 \mathrm{mdi}$ $7 / 3 ; 8+8+8,7 / 3 ; 24+8,7 / 3 ; 8+8,6 / ; 4 \mathrm{mll}$ can, $15 /-$, doz. condensers clips. $4 / 6$ doz., re sistunces, sizes from 220Ω to 2.2 meg . $1 / 2$ walt $3 /$ - doz. : assorter $1 . \mathrm{Y}$. Cs , 50 k short spindle handy sizes, $2 / 6$ doz. ${ }^{\text {V }} / \mathrm{cs}$ sok short spindle, $12 /$ doz.; standard $/ \mathrm{cs}$ With sw ong spinde. 100 k and $50 \mathrm{k}, 42 /-$ doz. ; 5k up to 2 trig., $4 / 6$ ea.: 250 k less sw , s , job line, 12% doz. aif wave glass dials. $8 \mathrm{sin} \times 5 \mathrm{in}, 3 / 6 \mathrm{ca}$. midget knobs, less grub
 holders, 1/- doz. Mazcla octal valveholders; $3 / 6$ doz.: anchoring tags on Paxalin panel. 3/gross; grid cap and lead on panel with 57Ω res. attached, $4 /$ - doz.: Paxalin panels with anchoring lags. 3 -4-11 way 3-way, $1 \mathrm{~d} ; 1$ watt carbon res., $27,000,75,000$, 4/. doz.: 10,000 $5 \mathrm{w} .5 /-\mathrm{doz}$: 0.0005 mica fixed condensers, 2/6 doz.: Weslectors, $1 / 8$ ca.: meter rectifiers. 5 ma . $5 / 6$ ca.: Coractual pluF and socket, 1/6: earphones, 50Ω with headbands, $4 / 6$ pair: high resistance carphones. 8/- pair; earphone inserts or mike, $3 /-;$ ex-Government test meters, see last month's advert., if you do servicing send s.a.c. All enquiries 6d extra for postage all orders under £5. No c.u.rl. 9056 SOUTMEIRN RADIO'S wireless bargains.Tratest, radio publications: 2/6; Radio Transmitters Construction Manua, 2 Rable Radio Manual 2/6; liadio Valve Manual, alternative and equivalent British and American valve types, $3 / 6$; Radio Circuits, receivers. transmitlers, power packs, etc., 2/6: Short Ware Handbook, $2 /-$; Ulera Short Wave landbook, 2/6; Manual of Direct Disc Recording, 2/6; Test Gear Construction Manual. 1/6; Radio Pocket Book, co:our code, formulas. ctc., 1/-; Bulgin Radio Service Manual, 2/6: Radio Constructors Manual. 3/-: Television Constructors Manual, 3/-: Radio Acrial Handbook, 2/6; Radio Hints Manual, 2/6: Amplifiers, fully illustrated. 2/-; Radio Resistance Chart, resistance values at a glance, $1 /-$; Ten Hows lor Padio Constructors, 1/-; Radio Heference IIandbook cloth bound un to date information 1rall aspels of radio, $12 / 6$ A mericall service Hanual Cruiles.Belmonl Spartoll Fimer ice Shenart Varner Fudr $12 / 6$ jer volumu postage extra on ali publications beud $21 / 4$ postage extra on all publicalioblicution 2 su stamp for full list of latest publications; ex. Army inroal plug, $4 / 6$ each, post 6 d . Lufbra arri jack plug, 4/6 each, post 6d: Lufbra adjustable ho.e cutters, for use on wood, metal or plastic. $5 /$. post 6 d ; relays, brand new.
Post Office 30 Post Office, 30 ohm, 400 ohm plus 200 ohm, 150 ohm and 500 ohm. $2 / 9$ each, post 6 d ; Tannoy carbon microphone inserts, $2 / 6$ cach. port Gd: A.C. molors, input $200 / 250$ volts A.C., rers 2.000 r.p.m., constant speed, power ishp, consumption under $1,2 \mathrm{nmp}$. Weight 201 los approx., $22 / 15$ each, carriage 5 \% GOUTHERN RADIO SUPPLY. Ltd., 46, Lisle St., London. W.C.2. Gerrard 6653. [8926

High Quality

TRANSFORMERS
and CHOKES

Made specially for your requirements. All coils layer wound and insulated between layers.

Our modern factory is fully equipped with vacuum and pressure impregnators and all the latest testing equipment.

POWER OUTPUTS
up to 4 K.V.A.
AUDIO RATINGS
3-200 watts
AUSTIN MILLS LTD. LOWER CARRS, STOCKPORT

Established 20 years. Phone: 570 3791

Specialists in

HIGH POWER - HIGH QUALITY

PUBIIC IDDRESS Sysitis
 + AWPIIIIRS from 150 W to IkW

W. Bryan Savage Ltd WESTMORELAKD ROAD, LONDON, n.w.e

You'ze SURE to get it ct STEERS

C Send 2 ldt. atamp for Stock List. When
ordering please cover mackink and postage.
STERN RADIO LTD.
115, FLEET STREET, E.C.4.
Telephone: CENeral 5814 and 2280.

A NTHNNAE rods, suit car acrials, all long /16in brase spigot one end; enquiries invited very large quantity available: also thousands rotary trantomert, suit conversion to frac tional h.p. mains mators - Auto Collections Ltd., 126. St. Albang Av Wu. Chiswick 1601), or 15 , I awrence St.- Northampton A MFRICAN BC610 tuning unils, with Awitch coils $1 /$ in shaft condensers. D.P.S.T $8 /-:$ new ID8 Octal 1.4 volt multi-valven, 20 new 954,955 acorns, $10 /-\mathrm{ncw} 957$ acoriss, 1 a metal valves, lighthouse valves, for lists of transformers, vibrators chassis, and compon, 22-32, College ${ }^{81}$ R Al)IO CHFARANCE, Ltd, 27, Tottenhan

 RF and Ll (iain controls, require P.1'. 250y rangit 6.3 v L.T'. All brnuse new in wooden are now able to offer these sets, which lend plidi, etc., at £7/19/6. Circuit diagram sup. $16 / 11$ man, AI. speech coil. 5in less irans. (rans.i $37 / 6$, all now and boxed. Electrolytics $8 m \ell 170 \mathrm{v}, 2 / 3 ; 16+24350 \mathrm{v}, 5 / 6 ; 16+16 \mathrm{~m}$
$350 \mathrm{v}, 5 / 6 ; 16+32 \mathrm{ml} 350 \mathrm{v}, 5 / 6 ; 32 \mathrm{mt} 350 \mathrm{~m}$ $\begin{array}{llll}4 /-; & 8+8 \mathrm{ml} & 350 \mathrm{v}, 4 /-; 8 \mathrm{ml} & 450 \mathrm{v} .3 / 3 ; 50 \mathrm{~m} \\ 12 \mathrm{v}, 1 / 9 ; 100 \mathrm{ml} & 12 \mathrm{v}, 1 /-100 \mathrm{ml} & 6 \mathrm{v}, 1 /\end{array}$ Moving coil milliameters, o-10ma, 2 in square 210 square, $9 / 6 ; 0.200 \mathrm{ma}$. ${ }^{2 \text { minin }}$ rircular mounting. 750 micro amp above are flus calibrated for use with thermo-couple a radiation meter, 8/6. Neter rectifiers, 1 ma
bridge type, $6 / 11$; ex-R.A.l. risual indicators type 3, with 2 weston 300 micro amp moveamp movements. $5 / 11$. Gang condensers. single, $0.0005,2 / 11$; single $0.00015,2 / 3$;
 spindle, $10 \mathrm{~K} .25 \mathrm{~K}, 50 \mathrm{~K}, 100 \mathrm{~K} .250 \mathrm{~K}, 500 \mathrm{~K}$ KK. 20K. $50 \mathrm{~K} .100 \mathrm{~K}, 2 /$ - 9168 WANTED, EXCHANGE, ETC.
W ANTED, WANTED, Mazda type 12 h c.r.t.-Wood TXANTED, small quantity wire, as insel WANTED, small quantity wire, as used 1 UDIO frequency laboratory wishes to pur putable manulacturers iMarconi. Muirhead Salford, Dawe, etc.): distortion factor meter ware analyscr, microvoler, A. Follentiator sensitive valve voltmeter, impeclance bridge, 5 watt autio nscillator, noise meter, oscilloscope -Write lo Box S19/1, Ilarwoorl Press (Adver (ising), l.ti. 47, West St.. TIarrow, Middx.
REPARS AND SERVICE.
Mainy transformers rewound. new trans MOTOR rewinds aud complete overhauls; first class workmanship, lully guaranteed
H. M. ELECTRYC Co., Lid., Potters Bldgs Warser Gate, Nottingham. Est. 1917. Tel. 3855 MAINS iranslormer rewound and con. livery-Browa, 3. Bede Burn Rd., Jarrow. [3460 Tivery-DSPEAKER repairs, British, Ameriran. Li any make, moderate prices.-Sinclitir Speakers, ${ }^{12}$, Pembroke St., London, 3308
Terminus 9355. Terminus 4355. measuring instruments skil. I LeCTliC repaired and recalibrated. Electrical Instrument Repair Service, 328. Kilbura Lane, London, W. Tel. Lad. 4168. $\mathrm{R}^{\text {EWINDS and conrersions }}$ output transformers, from $4 / 6$; pp equip. ment a specialits.-N.L. Rewinds, 4. Brecknock Rd., N.7. Tel. Arnold 3390 [6283
GERVICE with a Smile."-Repairers of all coil rewinds: American valves, spares, line cord.-F.R.1., Ltd.. 22, Howland St. W.1. Museum $567{ }^{2} 5$
(1575 REPAIRS to moving coll speakers, cones. coils fitted feld rewound or altered speaker transformers, clock coils rewound, guaranted satisfaction, prompt service: no mains trans accepted
L.S. REPAIR SERVICE. 49. Trinity Rd. Upper Tooting, London, S.W.17. Balham 2359 STORDY rewinds, mains transformers, a chokes and felds; we give prompt, dejvery ence; prices an request.-Sturdy Clectic Co.
C 4316

M.WISOND
 NOW IN STOCK IMMEDIATE DELIVERY SPECIAL

VARIABLE SELECTIVITY I.F. TRANSFORMER
4135 kcs , giving the choice of three degrees of elertivity, 1. High Selectivity. 2. Medium. sition switch. Ironl cored screened The second I.F. is centre tapped on both primary and secondary to reduce damping. Circuit lingram supplied. P'rice 21 per pair.

NEW CIRCUIT

A C.T.R.F. High Fidelity Receiver. 5 Valves. A. H.F. stages, infinute impedance detector,
Iriode output. Two wave-bands, Medium and Long. Provision for P. U. and İxt. Loudspeaker. Hlue prints. 3 6, two practical

6-VALVE SUPERHET CIRCUIT

 3 Wavebands.A circuit that will please the most A.C. only
This circuit has been designed to receive all worthwhile stations on the m dium wave bard ($200 \cdot 540$ metres) with a bigh fidelity outpit. Short Waves ($1 \mathrm{li-17}$ tnetres) are
as good as obtained on som. purely shortwave receivers. Australia and America have been received regularly by many of our customers at loudspeaker strength. Long Wave: The few stations now operating are well received
Bluo Prints. 2 Practical and 1 theoretical with detailed priced list of components, $3: 6$ per set

CIRCUIT No. 20

10 valves, 6 wave-bands, 12 watts (undistorted)
Output Superheterodyne Receiver
This rei is noted for its nue yuatity of reproduction on radio and gram. We have received much appreciation and congratulations from customers on its performance. A demonstration model is available at our premises at 307 High Holboro.
FULL SIZE BLUE PRINTS (2 practical and 1 theoretical) and priced list of components 5:-. Any component may be purchased separately.
Wo are always pleased to demonstrate Receivers built from our blue prints without obligation, and you are cordially invited to call, see and listen.

Onc minute's walk from Chancery Lane Underground Station.

307. HIGम HOLBORN
 LONDON W.C.I. Phone HOLBorn $463 /$

THE "WILLIAMSON" AMPLIFIER

If you are very critical of the reproduction from che average " quality " amplifier, this is the instrument for you. The designer claims this to be " virtually distortionless," to which we would add that the "actack" and transient response secs quite a new standard. We are now producing this amplifier to specificacion with first-grade components in chassis form ac

```
                                    &27.10.0
```

We shall be happy to arrange demonstrations by appointment
Orders are being handled strictly in rotation A limited number of acouscically designed cabinets are also available.

L. P. DISMORE (tormerls MORTON \& DISMORE)

52c Oldchurch Rd., Chingford, E. 4 Phone : SIL. 4987.

HILL \& CHURCHILL LTD.
 BOOKSELLERS

SWANAGE, DORSET

Available from Stock:
Fink, " Radar Engineering
Fink, "Principles of Television Engi-
Kiver, " Television Simplified
Zworyking \& Morton, " Television
Skilling, ." Fundamentals of Electric Waves
Lauer, Lesnick \& Watson, " " Servomechanisms Fundamentals
Emery, "Ulera High Frequency Radio Engineering
Sarbacher \& Edson, " Hyper and Ultra High Frequency Engineering
Postage excra.
CATALOGUE ON APPLICATION

5

Does these?

ACCURATELY and GUICKLY Chatis, Braokets, Shroods, Oondencor and Transtormer olipz Five sizas-12 to 36°
A. A. TOOLS (W),
1972. WHITEACRE BOAD
ABETON-UNDER-LYNE

COVENTRY RADIO
 Component Specialists since 1925

T.C.C. CONDENSERS. 450/550 volt-

2 mfd. $3 / 3 \mathrm{~d}$., $4 \mathrm{mfd} .3 / 9 \mathrm{~d}$., 8 mfd .
4/6d., $8-8 \mathrm{mid} .7 / 6 \mathrm{~d}$.
350 volt. $-2 \mathrm{mid} .3 /-, 4 \mathrm{mfd}$. 3/3d., $8 \mathrm{mfd} .3 / 9 \mathrm{~d} ., 16 \mathrm{mfd} .4 / 9 \mathrm{~d}$., $8-16 \mathrm{mfd} .7 / 6 \mathrm{~d} ., 16-24 \mathrm{mfd} .9 /-$
Wearite 'P'Coils. All types in stock,3/-
Wearite 465 kc.I.F.Transformers, pr.20/-
HIGHEST GRADE COMPONENT8 ONLY. No Rubbish.
sond for our 1948 list, price 3d. post paid.
COVENTRY RADIO
DUNSTABLE ROAD, LUTON, BEDS.

SEND US YOUR LIST

of requirements, and we will immediately let you know which items-usually 99.5%-we can supply FROM STOCK, and the prices.
Present constant changes in supplies and prices make the issue of a worth-while Catalogue make the issue impossible, but we DO carry the most comprehensive stocks of Radio 1 omponents Valves, Material and Test Equipment in the trade !
For a new experience in PROMPT and dilizent attention send your enquiries today, PRINT.NG your name and address in block capitals, and enclosing $2 \boldsymbol{f} \mathrm{~d}$. stamp.
WIRELESS SUPPLIES UNLIMITED (roprs. Unlimitex Radio Led.)
264-266, Old Christchurch Road, BOURNEMOUTH, Hants. REWYND service which duplicat DO YOU OWN THESE?

A speakers. etc; prompt returns.-lagldel Service R PWINDS; mains. output Adrane. Cro. 5537 R FWiNDS; mains, outpul transiormers, II.F. coil repairs. all makes; 25 years' experience; reasonable charges; prompt delivery.1 EWiNDING of all types of trantormer 1 Ehokes, etc.; quick service; motor rewinds of all types; replaccment bobbins supplied; new Iransiormers to any specification.-Radio \& Transformer Services, 570. Manchester Ril. Hollinwood. Lancs. 8638 IOUDSPEAKER and transformer repal quickest service in the trade, at competitive prices. Send ld ior our ruonthly service bulBorough Aills. Bradiord, Yorks. Tel. 22838 TOUOSPEAKER repairs, any make, reason and able prices, promplity fans; 25 years' combined experi ence with Rola, Maguavox, Goodmans, Celes tion.-SUund Service Radio, 80, Richmone Rd. Kingston-on-Thames Kin. 8008. [4977 REWINDS, mains transformers, speaker fieli 1 coil, chokes, high-grade workmanship, day delivers; new transformers construcled to customers' specification, singly or in quant
ties.-Metropolitan ladio Service Co., 1021 Finchley Rd., N.W.11. Specdwell 3000. [3719 24 -HOUR service, 6 montbs' guarantee, any and i.f.s. etc., nll types of new transf, etc, service card for trade prices.-Majestic ing Co., 180 , Windham Rd.. Bournemouth. COILspecialists.-Tuning and oscilator coils, wound and wound to specification; wavewind ing, L.S. repairs.-Electronic Services (R.T.R.A.). 17. Arwenack St., Falmouth Cornwall; and 49. पxbridge Rd. Ealing. W. 5
REWINDS.-Armatures fields, transformers 1 pickups. vacuum cleaners, transformers, speakers refitted new cones and speech coils, All guarantecd and promptly executed. New racuum cleaners, most popular makes. Send stamped addressed envelope for list of radio spares and c.o.d. service.-A.D.S. Co., 261-3-5, Lichfield Road, Aston. Birmingham, 6. 18238 COUDSPEAKER repairs.-L. Cottenham, for your loudspeaker repairs; all types repaired, fields rewound to any resistance, field paplacement bobbins, keen competitive prices replacenick service. keed to petitive prices Loudspeaker Repair factory Wi. Cottenham, Bradford Yorks NATIONAL RADIO SERVICE \& TELF: IBION CO.-Trado service engincers; types transformers, armatures, motors, loud ispes transtormers, armatures, motors, loud
speaker cones, speech coils fitted, British and American components and valves; enquiries invited for contract trade service; multiple transformer winding.-63, Jigh St., St. John's Wood, N.W.8. Primrose 6725.
[6752

MISCELLANEOUS

$\mathbf{S P E E C L I}^{\text {disiability; Mr. Ii.V. V. IIemery con- }}$ D sults at Wigmore Hall Studios, W. 2
W.W., Jan., 1943-Aug., 1947; £3 or nearest. XTA, Breedon St., Long Eaton, Nothingham. W As, rails.-Walters, 501 , Hale End Rd., E. 4.
WVOULD any capable amateur make. for remuneration a receiving set for a 6 valve amplifier.-Lampard, 2, Lexden Rd,
20 ions 22 and 26 gauge single rayon . covered copper instrument wires avail. able for immediate delivery; samples sent on CIRCUI' diagrams (individual designs) 8909 Circder: chassis layouts suggested to and technical advice for radio enthusiasts. special tuition by correspondence--Writs special G. Younz, 3a, Bridiges Rd., Wimbledon. R. G. YPPER and resistance wd., Wimbledon. COPPER and resistance wire, silk, rayon, swg: Litz. wire, $27 / 42$. 27/44 and $27 / 46$; 10 tons in stock at 10% under market price.-C. Weatherbarrow, Lti., Grand Bldgs., W.C.2. Whitehall 3948
SFND s.a.c. for our new bargain list D racks, panels, amplificrs, aluminium and dural sheet, dural tube; for example, type 27 R.F. units, $25 /-$; post free; salvage R. 1155 s (without valves and cases), uselul for spares, $35 /$ carriage frec.-Fanthorpe,
f8. Hepworth's Arcail Hull 68. Hepworth's Arcail. Hull. 18987 A LWAYS sure of a good reception.-Radio U.8.T. 21/6: Life (International), $40 /-$ Look, 25/-; Saturday E. Post, 55/-, etc.-For full list of all other American mazazines send s.a.e. to Willen, Ltd. (Dept. 52), 120

BC.348. This much eoveted receker bas a frequency mage of $200-600 \mathrm{Kc}$. and $1.5 .18 \mathrm{Mc} / \mathrm{s}$. 813 l. atitlon awitch bringe separate rrequency callbrated dial linto
 Do curns of tuning for each land -two stagon R.F.automatic nolse compensation-constant sensitivily on ull lazals-phone and кpealec output-nil standard 0.3 volt valves completa with plug-in lymawotor for 28 volls. Note this erao be renooved nad nlaudanit We will supply detalls, or do tie jobls if reculired.) Brand new and complete. PRICE E32 10s., plus 10 ; BC.312. Battery version of tbe famous BC. 342, brand
 R.208. The Armp precislou recelver, covers $10-60 \mathrm{M}$. *. Built-in pewer pack for A.C. malns or 6-voll bathery motiun drive-A.F. Raio-B.F.O. frequency contrul If.l. gativ-test panel on front-complete whth all
valven aud in krey metal chblnct $£ 1210$., carringe 30/- eatr. $£ 1$ will be refunded on return of packipe

DATA BOOKS, Copled from offrelal publlcallons, civing circult diagrains, component values and useful R.10.A-R.107-M.C.R.I-R.1155-W.W/8.22-RT. 18 TWis.19-R.1110A-all at 23 each, also Walke-
BUIL'S EX-GOVERNMENT DEPOT
40-46 WINDMILL HILL, RUISLIP MANOR, MODDLESEX
Open Bats. tlll 6 p.w. Weckdasa 4116 p.m.

RADDOEATIERYTLSTIER/

Use "Quixo" method of battery testing. Reliable results. Guaranteed Send for interesting leafel RaIs on battery testing.

RUNBAKEN. MANCH TTRII

EDDYSTONE ‘ 640 ’

We are now booking orders for this first-class communications receiver. Demonstration model on view at our Show Room.

EDDYSTONE • 504 ' in stock.
52 Page Catalogue of Components \& Accessories 1/- Post Paid.

B.T.S.

The Radio Firm of the South.
63. London Road, Brighton I, Sussex.

The advance in Radio Technique ofters unlimited opportunitles of high pay and secure posts for those Radio Engineers who have had the foresight to become technically qualiged. How you can do thas quicisy and easily in your epare time is fully explained in our unique handbook "Enginetrigg Opmortunities." Full detalls are given of A.M.I.E.E., A.M.Brit.I.R.E. City \& Gailds Exams., and partlculars of up-to-date courses in Wireless Engineering, Radio Servicing Short Waves, Television, Mathematics, eto., eto.

We Guarantec "NO PASS-NO FEE
Prepare for tomorrow'e opportunltica and fulure competition by acnding for your copy of thly Fery Informative 112-page gulde NOW-FREE.

QRITISH INSTITUTE OF ENGINEERINE TECHNOLOQY (Dept. 388)
17, siratiord Piace, London, W. 1

WINDING REWINDING AND LOUDSPEAKER REPAIRS

armatures，fields，motors， bobbins and solenoids． Nearly ready，Portable and Indoor Television Aerial．

Enquiries to

Southern Trade Services Ltd．

297／299，HIGH STREET CROYDON ＇Phone：CRO 4870

AMERICAN AIR FORCES 8 VALVE COMMUNICATIOR S RECEIVER BC．348．R．
We have been fortunate in obtaining a quantity of chis famous American Aircraft Receiver
Unlike most ex－service receivers，these are BRAND NEW and UNUSED，and in Specification
VALVE LINE－UP． 6 K7 first R．F．， $6 K 7$ second R．F．，6J7 converter，6C5 local＇oscil－ second R．F．＂first I．F．，6F7 second I．F．and B．F．O．， 6 B8 third I．F．，second detector and A．V．C．， 6 K 6 ourpue．
Frequency coverage ； 6 bands as follows
$500-200 \mathrm{Kcs}$.
3．5－1．5 Mcs．
9．5－6．0 Mcs．
3．5－1．5 Mcs．
6．0－3．5 Mcs． 3．5－ 9.5 Mcs．
POWER SUPPLY．A built－in 28－volt Dynamotor makes this the ideal set for those Hams＂in country areas who have to use accumulators．For chose on normal mains supply，the Dynamotor is easily removed and replaced by a power pack．
The many refinemencs include a Crystal Filter，and the choice by means of a switch of A．V．C．or Manual Volume Control．The sensitivity is better than I microvolt．
All sets are as stated above BRAND NEW and UNUSED，and are COMPLETE WITH INSTRUCTION BOOK．DON＇t WITH ONSTR Order yours now．

ONLY $£ 32$ 10s．（carriage，etc．，10／－）．
C．W．O．please．
S．A．E．for lists．
THE RADIO CORNER 138，GRAY＇S INN ROAD，LONDON，W．C． 1 （Terminus 7937）
（We are 2 mins．from High Holborn， 5 mins． from King＇s X ）

SPEAKER fabric fibre mesh used by leading
 posi $1 /$ inc．purchase tax，c．w．o．－Burman， 64 ， A LUMINIUM chassis and panels to your A requirements or in standard sizes，we call
 $6 i n \times 4 i 0 \times 2 i n$
Mead， $13 / 9$ Benre Lanc，Dainon，Barasley． －JUNCrion electric irons．complete with stand，switch connector and fiex，again valable；very prompt deliveries；beautifully
chromium－plated；the finest electric iron of its chromium－phated the finest electric iron ol ats
kind in the world．a．c．，d．c．，in all voltages
with rich range of other household clectrical appliances．－Distributors，Brooks \＆Bohm，
LAd．90．Victoria St．，Londou，S．W．1． 19023 $R^{\text {ADIO }}$ magazine lars－America＇s leading modern radio development pp－todale theory and its practical anthlication hether you are a lechnician inclustrial or ver your interest in radio may be，you can posted to you direct from America for £1／5 able in advance：send，\＆ull address in block pliers，Ltd，Ifudson IIouso，63，Goldhawk Rd

NSTRUMFNT WRK WATED

NSTRUMFNT gear cutting capacity．－Lloyd （iAPACITY available any job in Sotiogham．

CAPACITY areilable for assembly，wiriag $\mathrm{F}^{\mathrm{ACTORO}}{ }^{4028}$ has technical stall and ${ }^{\text {［8755 }}$ ch her artiables in manutncturing scientific or
 radio chassis．metal cabincts and metal
fittiness；presswork a speciality；individual
 $W_{\text {for }}^{E}$ make wircless and radiogram cabinets liveries－Radiac，Ittd export，Brondesbury Rd． London．N．W． 6. Maida Vale 8792 ． 18025

CABINETS！－Large modern tactory now CABINETS：－Large modern tactory now has cabinet manufacture；we have every facillty for | Rrge－scale productions；let us quote your－ |
| :--- |
| Box |
| y |
| 8645 | $\mathrm{E}^{\text {NGINEER starting high－class coll }}$ ing business desirest to contact firms who could supply own wire；only qualitw

 I．ARGE olde－established public company io London with extensive experience of mass
productlon woodwork and cxcentional facilities and resources for the profuction of radio and eramonhone cabinets would welcome enquiries from the trade－Enquiries to Box 3900 ． 8_{6655} T RANSFORMERS，chokes．coils．eic．re． or ounantity；cualified consulting engineere available to helr solve your vroblems：lieht nneineering，turnine．spot－welding，pressing
 on－Sca．Essex．

SITVATINNS VACANT

Vacancies advertiscd are restricted to persons or cmplouments excentrd from the provisions of the Control of Fnalarment Oriter． 1947 CITY of Wakcfield Education Committee．－ G．N．Blair，M．C．，B．Com．，A．C．I．S．，F．I．I．A． G．N．Blair，M．C．，B．Com．，A．C．I．S．，F．I．I．A． AN instrument mechanic is required lor the
Department of Technology and Science． Departmeat of Technology and Science．
Applications nre invited from men who bave Applications are invited from men who bave
served an apprenticeship as an instrument served an apprenticeship as an instrument
mechanic and who have had subsequent ex mechanic and who have
perjence in that capacity
perjence in that capacity． for the Department of Technology and Science．Duties will be primarily concorned with the plysics，chemistry，mechanics and electrical laboratories．Applications ure in－ vited from men who have served au appren ticeship，preferably in some branch of engin－ cering．Previous experience as a laboratory steward，allhough not essential，is desirable Experience of storekeeping or of simple main £300 per snnum，rising by three nnnual in－ crements of $£ 15$ and one of $£ 5$ to $£ 350$ per annum．Further information regarding mature of work，hours of duty，superannuation，hol signed on receipt of a stamped addressed en velope．Applications should be returned with relope．Applisntions should be returned with
in 15 days of the issue of this adyertisement C．L．BFRRE，Director of Education．Educ：i
tion Offce．27．Klng St．Wakeficld． 8.12 .47

RADIO 246．HIGHST．HARLEDBHEVALVES

BRIMAR．－1DS， $11 \mathrm{C}, \mathrm{BB} / 250 \mathrm{~A}, \mathrm{UB6}, 6 \mathrm{~K}, \mathrm{GK}$

 $41 M H L, 4 M P, ~ 41 M P T, 41 M R C, ~ 11 B T H, ~ 42 . O T$, 420 T DD， $12 \mathrm{PT} 乃, 202 \mathrm{~V} P, 202 \mathrm{VPB}, 203 \mathrm{THA}, 210 \mathrm{DDT}$, DD（A．MP／PEN，MY HFN，MYIPESB，JFQ／PEN GMA，OMB，OMn，OM10，YT10．KG XW
MARC NI／CBRAM，－CHT－F．4102，B／\％，D41，D42． D83，NA30，D（i2，DL／3，DLF4M，GTIC，तU50，

 X61M，工65，X71M，Y63，Z20，253， 301,302

MAZDA，－ACFPES，ACGPEN，ACIP，ACPED，ACP4， ACTIl1，D1，DCP，DCAG，DD41，DD101，DD207 DIN：20．11210，HL2IDI，HLE3，HL23DD，HLA H（A1）！H1H2DH，HLI33DD，HLDD1320．If1，
 MULLARD．2NAA， 2 D13C，SU4， $5 Y 3, G C 5,6 C 5$ 6196，6．57， 1 CCII3，C123，CYi，CYIC．CY31，DAF゚91，DF33， DF゙J1，DF91．DK91，DL3j，DL92，DO24，DO2G，
 ECII3，EFS，ELH，EFV2，EF37．FP39，EF50，EFFH，
 PM22A，PM22C，QP22B，SPA，SPI3，SP13c．T6D，
 UY21，UY3
AMERICAN．－O74，1At，1A5，1B4，1D7，1ES，1E7， 1TA， $1 \mathrm{TK}, 1-\mathrm{V}, 2 \mathrm{AB}, 2 \mathrm{~A} 7,2 \mathrm{BG}, 2 \mathrm{B7}, 2 \mathrm{X} 2,3 \mathrm{~A} 8,3 \mathrm{~B} / 1231$ GAET／LA！3，6AC7／18イ2，6AE5，6AE6，6AC5，GAG6 GACF，6AK5，6B4，6B7，6BR，GCH，6C5，6C5，6CR GDS，BDO，G1）B，GES，GEG，GFF＇6F\％，6F GFS，GCis 13N7，6Q7 GI5，GR7．GSA7，6SC7，fSNF，GSG7，GSIT7

 7C7，7117， $787,7 \mathrm{Q} 7,7 \mathrm{Y4}, 10,12 \mathrm{~A}, 10 \mathrm{A5}, 12 \mathrm{~A}, 12 \mathrm{H} 7$ 12C8，12J5，12K7，12K8，120 7 ，12sG7， 12857 ，129K7 12SO7，12SF5，12STR $1+147,1+\mathrm{BC}, 14 Q 7,15,17,20$ 12SQ7，123F5， $22,25 A 6,25 \mathrm{Y}, 25 \mathrm{Z4}, 26,27,28 \mathrm{~L} 7,29,30,31,39,33$, $22,25 A 6,25 Y 5,25 Z 4,26,27,28 \mathrm{D7}, 29,30,31,32,33$, | $53,55,57,59,77,79,80,81,83, ~ 84, ~ 89, ~ 807, ~ 832, ~ 566 A ~$ | |
| :--- | :--- |
| 154, | 11726,1299 ， $1626,7193,9001,9002$, | 0003． 9004 ． 2005 ．0006，and 101 more types．

Orjer C．O．D．above listed numbers or equivalents （subject lo slock）．Plessc enfulre for any ralve gnu require，eren if oot listed．We maj haro th Olu and new types are artiving dally．
\qquad
Just in ：CBLI．ClH，EK32．EM1，EMs，L2，MHLD6， TSP4，2P，8A7，251，6gt， $25: 26 \mathrm{Et}$

THIS MONTH＇S SPECLALS
American Service shects，dozen 106 ．
Midget Speakern，vin．，sulte MCR，also as extensions or mikes，7i6．
＂Radio ServicinR and Majntenance，＂8．6．
Trimmer Tool Kits（old price）．30，
Radjo－Cralt＂Avorican Library， 10 Books（unare－ peatable），36／－
ATO Battery Ciscilistors．12．－．
TAYLGB Meters un engy terums
Ex＝A．M．Batteries，laert 120 v．， 109.
El．Motors，work of 31 to 8 v ．Uattery，12．6．
Vidor Portable Elec．Cooker，w．oven（no tax），£2／2．6．

BROOKES CRYSTALS EST． 1929

FOR YOUR
requirements
51／53，GREENWICH CHURCH STREET，
LONDON，S．E．10．

The periect balance

 LDOSIBrmtowards periection－

THE LOWTHER WANUFACTURING CO．

Lowther House，St．Mark＇s Road， BROMLEY，KENT．

Rav． 5225.

Our original post－war plans have met many man－made setbacks

 REVISED PLANS are evolving．Please don＇t write，phone， or call．We will advise when ready．
 VO\｜GT
 PATENTS LTD．

At E．O．T．prices，British and American，these are only a relection of our 10,000 valves held in stocy．fiense end for on comprehenaive Valves Available Lint，iree，
encloring S．A．E．Tor reply．Postake 60 ．pxra，C．W．O． encloring S．A．E．for reply．Pott
or C．O．D．Retrijers not gupplid．
KOLLARD，－KTSN，KY3＇，KBC32，K125，PC2，

 EP36，EPG7，EP99，EP50．EFJH，ECs1，EC52，ECis，
 ELSS，ELS7．PLS4，ELL60，EBL 31 ，EBY1，PM24M． TT4，TH4B，VP4，VPAA，YP\＆B，KP4，$S P 4 B, 204 A$ ，
 CIf，CCH35，TH3NC，FCIS，Fi，
ATERICAE EAFGE，－16，18，26，31，82，अ4， 37 $39 / 44,41,43,4 \mathrm{H}, 71 \mathrm{~A}, 7 \mathrm{0}, 77,80,83,84,89,2151$ 6．5．6L7，6A4，6K7，606，6F5，6K7，6A7，6А7，6Ah，
 6GR， 0
$25 A \mathrm{~A}$.
 KrW62，H63，LA8，DA3，DH63，DLH3，KT61， ET03，KT06，X78צ， 210, ， KT74．KTW74．X71，KT73．KT71，KT7E，20．2 KTZ73．

H．R N N E O N
OHF ，THEET \rightarrow RIUETOM．Phon Bn－nIod Be0\％

M AISTRY OF CIVIL AVIATION APPABpolntment of Raccio Mechs，Grade It
 slations in the United Kingdom．Candidate
must possess a knowledge of the fundamental must possess a knowledge of the tundiamental
principles of radio ind radar with a general knowledge of one or more of the followink
 I．oran．Gee．Radar Be．ans．ACR or G．CA
they should also liave had practical experience in the use of tools，fliling，drilling，haral athl soft soldering，cabling and wiring and
pertenced in the use of electrical and measuring instruments including cathode oscillo－scopes．The possession of City and Guil？ Certifirates in Radio Communication ant leis nical blectricity will be in advantage The pals annual increment of $3 /$ ：it weck to in miximum of $130 /-$ a week．Applications which must be qualifications stating date of birth，full details of qualifications and experience and quoting thi reference C．A．Est／R，M should be addressed 10 the Establlisliment Division，Minıstry of Civil
Iviation，10，Fleet St．，London，F．C．4．［8981 $\mathbf{R}^{\text {ADIO engineer，experienceil in practica }}$ telison．

A Fice engineer skilith and tolevision ser good wages and pleasant pre－war expericucc：
 J UNOR engineer required lor development pany in Surbiton anea；degrec or cquivalent ${ }^{11}$ electrical engineeriug essential．－Box 3903 J UNIOR laberation assist int with some trainng．－Write，giving details of expectiencal age，etc．to A 11 IIuat．Ltd．，Bendon valle．S：W 18
$\mathbf{S}^{\text {ECRETARY }}$ to research manager of pro Saresive conpany in surrey required； Matriculation certificate or equivaleat essen tialt position would suit ex Service woman
with radio or rallar experience．Box 4772
 $\mathbf{R}^{\text {Wales }}$ near Aberdare，experiencell radio and television design engincer．－Write．stating
 Aberdare
［9091
7 VCHNICAL representative，aged 30 to 40 ． f domiciled in the Manchester area pre ferred，to contact manufacturers of radio．and electronic equipment in Norlh Country．－ Vrite，stating age，experience and salary re J UNiOk laboratory assistant．20．22．with some knowleclse of cliemisiry，preterably up to inter－B．Sc．standard，for raw material and process testing－Write，giving details ot
 DEVELOPMEN＇engineer required for test
 some previous axperience and siniable tech nical qualifications essentian－－Send tull par ticulars ${ }^{20}$ Taylor Eiectrical Instruments． EADING Company requires junior develop $\mathbf{L}^{\text {EADNG Company requires junior develop．}}$ terably with experience in radir or communi． rernuly win experience in
 and e400（according to experience）with ex
ce：lent prospects for idvancement． －Box 496 ． $\mathbf{S}^{\text {ERVICE Cuginerrs }}$ S born centimetric radar equipment re quired：applicant should be prepared to live in a porl and travel as work requires；pre erence will be given ex．Naval men．－Box PP．1912．W．H．Smith \＆Yon，Manchester，${ }^{3}$ $\mathbf{T}^{E C H 1 N T C A L}$ sales repressntatives required perience eftectromedical specialists；s．s．es ex perience essential，alico technical knowledpe
oi valve circuits，
 Penses；areas：London．S．E．E England，North Midlands；car owners preterred．- Details Box $\mathrm{S}^{5110} \mathrm{ENYOR}$ draughtsman required for compand S manulacturing radio and colectinay equipment goo salary prosinects and 5 －day week．－Write giving lull details of experit ence and salary require，t，Taylor Electrical Instruments，Ltu．，Montrose Ave．，Slough $\stackrel{\text { Bucks．}}{5}$
$[9139$
\mathbf{A}^{N} neer with first is now open for an engi ing radio wh drst－ciass experience in design． A． lor a man with engineer，excellent prospect tive man with the right experience．initia 5084 organising ability．－Write to Box $\mathbf{R}^{\text {LoUULRED }}$ War mechanical＇desienner，prererabily smant partic radio and television production－Write，stating age gualifications，experieace and salary re

A．C．E．RAMIO

SPECIALISTS IN SHORT WAVE
 the Experilumber ald llame Contertr

COMPONENTS

 neutralising typex Ftixed Coniensent，mice，mper filock and tubulir．ilectrolyte and ther micu：Cuilo null Coil

 Loulspeakers Sturn 313 n ．to 12 in ．，inchailing ther famous Metal Cabineta and Chnosir by Fddystone．17ull range of ralves，iucluding Mullard，Marcond，Oa mant，Marila，Conaor V．H．F．seviez GAK K．F． $9001,9002,9003$ serien：Trathenting
 100 T 1 I ，＇TZ40， 608 ，B6GA，Hラ50．＇にK20 A，Jに100，etc．

COMMUNICATIONS RECEIVERS

 Our recond hand list－B．W W＂：in revired every tew weth and details our chrrent utock of receivers．We ure genernllsable to ofer modela by NATIONAL，IlALLICRAFTEItS R．C．A．，etc．，as well iA Oscillitors，＇rest ficar，ete．This list，engether with our Component Catalogue

44 WIDMORE RP BROMLIY，KENT

220 D to 220 A．C

BEETHOVENELECTRICEQUIP［．IENTLTD． Eeethoven Worlos，Chase Road London，N．W． 10

WIRELESS CRBINETS

Manufacturing capacity available with speedy delivery of Cabinets and Speakers of all sizes and designs to individual requirements．（Trade enquiries only．）
BIRNEY SMALLWOOD PRODUCTS LTD．
＂Swan Worns，＂Fishers Lane，London W．4．

THESE ARE IN STOCK

Radar System Engineering．Ed．by L．N Ridenour．45s．Postage 9d．

Radio Engineering．Volume I．By E．K Sandeman．45s．Postage IOd．

Television．By V．K．Zworykin and G．A Morton．42s．Postage 8d．

The Mathematics of Wireless．By Ralph Stranger．7s．6d．Postage 5d．

Radio Data Charts．By R．T．Beatty 7s．6d．Postage 5d．
Electricity Meters and Meter Testing By G．W．Stubbings．16s．Postage 6d．

Network Analysis and Feedback Ampli fier Design．By H．W．Bode．42s Postage 8d．
The Wireless World Valve Data．2s Postage 2d．

We have the finest selection of British and American Radio Books．Complete list on application．

THE MODERN BOOK CO．

（Depl．W．l）．
STREET，LONDON，W．

1948

POWER UNITS.

CHDKES, OUTPITS
For all published designs.
Skilful engincering, latest technique with new versatile mountings and ease of connections.
Robust, silent working, accurate ratings, ensure Robust. silent working, accu
long and satisfactory service.
A Transformer for the quality amplificrs or the smalless midget receiver, We make it.
Power trans. for W.W. Quality, 57/6.
Power trans. for W.W. Quality, $57 / 6$.
Oucput Transformer for $15 \mathrm{ohm} ., 60$.,
Your choice from 77 production units, or Kits of Transformers and Chokes for building your own amplificrs, 42:6 set of three. Kits of these components are available for amplifiers up to 40 watts.
Write for 1948 Supplement.
(illustrations of new types cannot be shown in this limited space.)

1948 New Models in factory-built amplifiers. Now incorporating bass and treble boosting. improved de luxe versions of all previous models.
Example AC 10 PLUS for home gramo, with two inputs, impedance fileers for any pick-up, bass boost couplings, etc., $f 10$.
Our AC 18 and AC/I8MIC models now greatly improved. Ask for details.
If you are unable to obtain G.L. Products from your local dealer, please write us. Full catalogues on transformers, amplifiers, speakers, microphones, spares, etc., send 3d. stamp.

GENERAL LAMINATION PRODUCTS

LIMITED

BROADWAY, BEXLEYHEATH

Are you missing the GREATEST

> HARGAIVS ind

Rotary Transformers Type 79. Input 26 volts. Output 300 volts, 220 mills, plus 150 volts, 6 M.A.

POST FREE

YOUNG engineer required as representative Yurers. leading electronic instrument manufacLurers. Londlon area; O. \& G. Grade III or
equivatent Service qualifications; state age, exequivalent Service qualifications; state age, ex-
perience and salary required.--Box 4966. $[9021$ perience and salary required.- Box
$A^{\text {SSISTANT }}$ engincer required lor our A laboratory engazed on the design of radio broadcast receivers: applicant must have held similar position for three or more years.-
Nitue in first instance stating ful! particulars Nrite in first instance stating full particulars
and salary required to the Personncl Manager, M, Michael Radio. Lith, Wexliam rit. Slough: T Conichal ofsistant wanted for technical control of alt processes in experimental
valye manutacture; experience in this type of work essential; some knowledge of hish vacuum technique and glassworking practice desirable; West London area.-Applications including academic qualificalions. age, experience, and ¢alary required, to be addressed to Box 4975. TECHMICAL assistant required by welldistrict for investigation of improved processer
in cathode ray tube manufacture in cathode ray tube manufacture; degree in
chemistry or an cquivalent aualification chemistry or an equivalent qualification desir.
able; industrial experience on similar an asset-Aplial experience on similar work
andications, which should include Tull details of tranling, expericnce, age and
salary axpected, to be addressed Box 4962 .
 with gation and measurements in conjunction with radio and clectronic devices; experience in
electron optics desirable, with ability for original design; applicants should have reached accepted standard of education and carry adequate production-design experience; West lails of education and experience to box 4770 . ' $\Gamma^{\text {ECHNIICAL }}$ assistant required by large have clectrical manulacturer; applicants slaould of radio preceivers, and be familiar with the design and operation of dealer test cear selected candidate would be required to submit reports and compile instruction books on test near and give practical demonstrations.- Write. aiving full dectails of age, experience and salary
regnired. to 130×4501.
[8908
 recording and other electronic aids for blind pople. Applicants should have an Honours gincering, preferably with practical experience Incering, preterably with practical experience
in this branch of electronics. Initial salary according to qualifications in the region of £ $450 \cdot £ 550$ Wilh supernnnualion ${ }^{\text {region }}$ under i.S.S.U.-Apply to St. Dunstan's Researcl DUBLICITY department DUBLICITY department of large electrical ake charge of publication of sales promotion therature; work comprises sub-editoring of material and direction of presentation and printing; essential qualifications, good educa tion and personality, B.Sc. (electrical engineering). age 27 to 4 5: leadership and adminis. trature ability, orlginality and good artistic appreciation, knowledge of type and of repro duction proocsses; previous experience of sim1 lar duties--Write. giving full particulars of experjence, and siato salary required, to Box N5377.A. AdVg. $212 a$ Shaftesbury AW...W.C. 2 . E M.I. ENGINEERING DEVELOPMENT ing office for the following:-(a) Senior electro-mechanical designer-draughtsmen. (b) Senior mechanical designer-draughtsmen. (c) Senior electrical designer draughtsmen. The above are required on electronic. telecon sutuication, and electro-mechanical engineer ing; only ist class designer draughtsmen need apply. Vacancies offer excellent prospects on high-class work of paramount national im-portance.-Apply, stating age, fullest details of experience. together with salary required, to Personnel Department, E.M.I., Ltd., Blyth Rd., Hayes, Middlesex.
$[9118$
B ${ }^{\text {B.C. invites applications for the post of en- }}$ the rescarch depariment, based in tondon the rescarch depariment, based in liondon. Candidates must possess a university degree, or equivalent qualificatious, in physics or electrical engineering and must have taken telecommunication as part of their training. A knowledge of electrical measurements, measuring instruments and expcrience in microphone and loudspeaker technique is essential. The work includes research into microphones and loudspeakers and embraces all other aspects of audio frequency research and development. Preleronce will be given to a candidate with the abilits tr. guide development work in drawing offce and workshops. Mușical ability is in advantage. The salnry is on a grade ris. mum of $£ 890$ per annum. Applications, stating age, qualifications and experience, should reach the Engineering Estab, W.1, within 14 Broadcasting
deys of the apprarance of this nivertisment

${ }^{\text {THE }}$
 BRITISH NATIONAL RADIO SCHOOL

ESTD. 1940

A privately owned personally conducted coaching service by post

SERVICE SATISFACTION

SINCERITY

PLUS A GUARANTEE

 that realiy means SomethingORIGINATORS of the B.N.R.S. FOUR YEAR PLAN

Covers full syllabus of A.M.I.E.E. A.M. Brit. I.R.E., and C. \& G.

Radio and Telecommunications Examinations at a cost of

$8^{\text {d. PER DAY }}$

Free Booklet from
Studies Directo:, B.N.R.S.,
66, ADDISCOMBE Rd., CROYDON Phone : Addiscombe 3341

PEERLESS

TYPE 1047 RADIO CHASSIS

Those who visited our scand at Radiolympia were quick toappreciate that thischassis, with its workmanlike design and generous specification, provides the enthusiast with something out of the ordinary at a reasonable price.

Among its principal features are:-

- io stage superhet circuit.
- 10 valves (including magic eye)
- RF amplifier.
- 2 IF stages.
- 4 wave bands.
- Io Watts push-pull output
- Tropicalised components.

Communications enthusiasts should write for details of our 1546 Chasads.

PEERLESS RADIO LIMITED

374, Kensington High St., LONDON, W. 14 Phone: WEStern 122

THE CHARLES BRITAIN

Duo Channel Amplifier Chassis. An entirely new departure in amplifier design giving complet ely independant control of lase and treble.
Thif is achiered by incorporating iwn entírely separate whiplliters on one chassile. One of these amplitiers ia a push full combination Which drivee a 12 in. Enenker for reprofuc.
thon of the twes. The other in a two stage ampliner drising no 8ln. apeaker for the tretve
The diweriminating user can, br means of the two controls provided. control the amnunt of oignal handled by each amplifier. therebr lncrcasing the hasa or trelle an denifed. Complete with 7 valves; 3 6J5. S 6YG. $15 U 4$ and 1 wo apeakerf, Gcodmans 12 in . P.M. and Rola yln. P.M.
For ojeration irom A.C. mains $200-250$ volis, 50 cps . and iuly kiarantecd for 12 months. Price E2A carriage pald. Por further detalls of this and other aupllilers send for dlustrnted brocbure. W:W.
EXU.S. NAVY Aircraft Radio Receiver Unit.
Ihis outiz s complete to Bleck metal case alre $121 \mathrm{~s} . \times$ I2ln x Sin., and ccitalns ID addition to a bost of useful ocluding 2 GH6. 6 GSH7, etc Super quality Retary Gencrator, relaỵi I.F. transformers elc. PRICE 296 cach, carriage and packing 7,6 extra.
Drder earls to be aure of securing this eatraordinary bargain

CHARLES BRITAIN (RAD O) LTD.

Radio House, 2, Wilson St. London E.C. 2
Telephone: $8 / 52965$

MAR1 ROTARY CONVERTERS

For Radio, Neon Signs, Television, Fluorescent Lighting, X-ray, Cinema Equipment and nnumerable other applications.

We also manufaczure:-
Petrol Electric Generating PJants, H.T. Generators, D.C. Motors, etc., up to 25 K.V.A.

CHAS. F. WARD LERDSCROFT WORK8, HAVERHILL, SUFFOLK Telephone: Hoverhill 253 \& 4.

. or Secondary Frequency Standards * Accuracy better than $\mathbf{~} .01 \%$ \& New angles of cut give cemperature coefficient of 2 parts in - million per degree Centigrade cemperature change. it Vitreous silver electrodes fired direct on to the faces of che crystal itself, giving permanence of calibration. स Simple singie valve circuit gives strong harmonies ax 100 kes. intervals up to go Mes. t Octal based mount of compact dimensions. PRICE 45/-Pos Free

Full deails on the $05 / 100$, including circuit are concained in our leaflet Q1. Send stamp co-day for your copy
THE QUARTZ CRYSTAL Co., Ltd. $63-71$ Kingston Road
NEW MALDEN, SURREY
Telephone MAĹcen 0334
B. B.C. invites applications to fill a sacancy gineering division; the work involves theoreti cal and practical investigations on acrials transmitters, and systems of modulation; piac not exsential; applicanis must possess recos not essential applicants must possess recog nised academic qualification, incluting a know
ledge of the theory of wave propagation, and ledge of the theory of wave propagation, ani an aptitude for original investigationi incre salary is on a grade rising by annual incre-
ments of $£ 25$ to 2 maximum ol $£ 580$ per annum; good promotion prospects; the successful candidate will be based at Oxford, but will later be transferred to a permanent base near ,ondon- Applications, stating age, quall Engineering Establishment Officer, Broadcast ing IIouse, London W 1 within 14 days the appearance of this advertisement. 88990 B. 8 C , invites applications for a number of designs department in Iondon. should have a university degree in engineering or an equivalent quafification in engineering communication subjects. The work ol the in partment covers design of testing equipment partment covers design of testing equipment 405 -line television, the design of tranic and for apparatus for teleprinter and telephone carricr apparatus for teleprinter and telephone carricr
transmission, and for the various systems of disc and mitgnetic recording and reproducing disc and mitgnetic recording and reproducing equipments used in broadcani.ing. Specialist knowledge and experience in design work in
any of the above is essential in the any of the above is essential in the higher Srades and will be an advantage in all cascs. Starting salaries dependent on qualifications and experience; appointments will be in grades ranging from $£ 580$ pcr annum maximum for jubior designers, to £995 per annum maximum for senior designers. Applications, stat ing age, qualifications and experience, should reach the Engineering Establishment Officer Broadcasting House, London. W.1, within 14 days of the appearance of this advertisement. B. B.C. invites applications for two posts of the research department based at Oxford. Can didates should possess a university degree, or a recognised diploma, and slaould have taken telecommunication as part of their training They must be capable of conscientiously carry ing out experiments involving radio irequency measurements in any part of the British Isles and should have an interest in ficld strength measurement work and allied problems of propagation applicable to broadcasting. Experiase of transmitter and acrial desirable. The successlul candidates will be based at Oxfori In the first instance, but qvill be required to spend a large proportion of their time away from base, and at a later date the base will be translerred to the London Area. The salary is on a gride rising by annual increments ol £30 to a maximum of $£ 680$ per annum. lpplications, stating age, qualifications and cx . perience should reach the Engineering Estabperience should reach the Engineering Estab-
Jishment Officer, Broadcasting House, London, W.1, within 14 days of the appearance of W. 1 , within 14 days of the appearance ol
this advertisement.
[8999 This advertisement. ELECTRONIC KEL THE MULLARD ELECTRONIC IREcations for the lollowing posts: (1) A senior scientist to lead a group working on ultra high radio fraquency circuits in close association with valve laboratory and on centimeter wave projects; he should have a good honours degree in physics or eiectrical engincering or mathemaics, at least four years experience in the UHF field and be capable of both experimental and theoretical treatment of problems in this field. It is expected that the age of the successful candidate will be between 27 and 35 years and his salary between $£ 650$ and $£ 1,000$ a year according to experience and ability. (a) Scientists for both the group mentioned above and other groups working on super above and other groups working on super
gonics. electronic measurement and control. television and radio component design. They should bave similar academic qualifications to the senior man and preferably some experience of reges sch work It is expected that and preferably some experience cessful candidates will be between 20 and 30 cessiul candidates will be between 20 and 30 years and their salaries between 2350 and cations shou!d be made to the Misions. Appl lard Research Laboratories. Salfords, Nr. Rerl hill. Surrey. Laboratories. Salfords, Nr. Red
[9017

8ITUATION\& WANTED

CX.R.A.F.Cpl. Radar Fitter, 21 ambitious seeks interesting post with plenty of scope. Box 5045.
[9099 BALES engineer (32) seeks post based West yrs wondon area; final City and Guilds, talive experio manulacturer, wide represen aud indastrial instrumentation, merlical equip
ment.-Bnx 495 ?

HIGH FIDELITY

We weicome all enchusiasts to our new premises. We carry stocks of Partridge and output valves, macched resiscors. high qualicy loudspeaker, P.Us., gramophone motors, baffles. Bass Reflex cabinets, and all components for High Fidelicy Receivers and Amplifiers. Complese equipments are also available. Our price list is available and we witl be glad to send you a copy on receipt of your address and 21 d . stamp.

ROCERS DEIELOPMENTS CO.

12, MACCLESFIELD STREET,
SHAFTESBURY AVENUE, W.I.
Tetephone: GERrord 8256.

TRANSFORMERS \& COILS TO SPECIFICATION.
MANUFACTURED OR REWOUND. Filter Coils a Speciality. JOHN FACTOR LTD.

9-11 EAST STREET, TORQUAY, DEVON.

'Phorie: Tolquay 2162
> "WEYRAD" PERMEABILITY TUNERS
> SUPERHET OR T.R.F.
> AS EXHIBITED AT
> RADIOLYMPIA
> SEND FOR
DETAILS

WEYMOUTH RADIO
MFG. CO., LTD.
CRESGENT WORKS, WEYMOUTH

SAPPHIRE JEWEL POINT

The
 GOLDRING

PERMANENT NEIDDLE

ERWIN SCHARF
49-51a, DE BEAUVOIR RD LONDON, N. 1
rel.: Clissold 77 I3-0941. Cobles: Echovox, London
'Radiospares'

Quality Parts

The
Service Engineer•'s First Choice

CALLING AMATEURS with BUCCLEUCH Precision Built Equipment STEEL OHASSLS SMOOTH BLAOK
 PANELSORACKLE
$19^{\circ} \times 34^{-4} .49^{\circ}$

$19^{\circ} \times 101^{-} .8 / 9$

ANOLE BRAOKETS, 121" lovg, pr. 7/6 ALI Lo Bright Aluminlum, eame cost.) (Rigld 4-Pular), 03'. E3:6s. 194°. $22 / 53$ Obmale, evo., to onjer, to sq. inch (Inciude oides when costlag.)
VALVE HOLEBARES OP TO
METER GOLES eto. $1 / 6$.
BUUABE HOLES. 2/\%.
GUCC LEUCH RADIO MANUFACTURERS
\& 2 MELVILLE TERRACE EDINBURGH. 8
'Gram: 'Whaulfold St.. Edinbinduroh.

YOUNG man, 23, gocd theoretical knowledge Lical experience. remuneration of seeks praciance than need for expericnce.-Box 4768 . C NGINLERR, middie 30s, C and G Finals in tricity, secka change; experienced production tricity, sceks change; experienced proturtion
testing and test gear and receiver developtesting and test gear and receiver develop-
ment: sorne television knowleclge.-Boz 5103 .
[9151
(\quad Ronnuate engineer of mechanical faculty, of with wide expersence, managing director apecialist in mass production, tume and motion thady tools and machine dxtures designing. thorougli knowledge ol limits now precision

FINANCIAL PARTNERSHIPS
$W_{\text {AN'tiJ, active interest in mound radio }}$ さ2.000-B0x 5022 .
IXPANDING company offers active partnes Workinf knowledge of aerials. amplificrs and test instruments: excellent possibilities for keen, Lard-working man; capital $£ 500$ to

, 0 TUITION

HNGINEERING carcers and quallicatlons
BOJII Government and industry have anounced and emphasised that young men must receive cvery chance to rise to the highest positions within their capacity, in write to cday for 'OThe Engineer's Guide to Success" -200 courses free-which shows you
how you can become A M.IE.E., A.M.I.A.E A.M.I.Mech F.. A.F.R.Ae.S. etc., and covers clectrical production, automabile, mechenicai MHE Technological Institute of Great Britain. 82 Nemple Bar Mouse. London, EC.4. [4918. POSTAN, courses of instruchon for amateur ficates in wireless telegraphy, Ministry of Civil television ; also instruction at Echool.-Apply
British Sithol of Telecraphy, Led., 179. Clap ham Rd. London, SW. 9 (Es Ld. 40 years).
E had your copy of this free guide to N.M.Mech.E., A M.I.E.E., and all branches of cngineeriag, bulding and plastics? Become echnically trained on " no pass-no fce " terms write higher pay and security, -For Iree copy

w. (Dept. 387B), 17, Stralford | Write B.1.F. (Dept. 387B), 17, Stratiord |
| :--- |
| [6939 | r甲ile Invituto ol Practical Radio Engimeers Ing havo available llome Study Coursen cover practical and laboratory tuition in radio and television engincering the text is saitable television enginecring; the text is saitable coaching matter for lipiR.L. Service entry and progressive examb. ; tuitionary iees at pre-war rates-aro moderate- - he Syllabus of irestruc; lional Text may be obtained, post iree, Rrom the Secretary, 20. Fairfield Rd., Crouch End. N. 8.

AGENCIEB

CONTACTS deaired with overscas radio im porters.-Box 5047

> AGENTS WANTED

MANUFACTURERS reguire representative I. throughout the U.K. Wo market thei cial moving coil pick-ups and other apecial lies.-Write to Bor 4468
[8866
BUSINESSES FOR SALE OR WANTED
B USINESS with four-roomed lat, six good B agencies, sales and service. S.W. London £1,250 p.a.: price \&1,500 s.a.v.-Write Box e1,250 p.a.: price 21,500 s.2.v.-Write $[9136$
5 CB 3 R ADIO and clectrical retail repairs, lock-up const; annual turnover approx. $£ 1,000$; price, inc. fixtures, fittings, test sear, etc., $£ 550$ Hus s.a.7.: low rent, moderate lease, audited accounts.-Apply c/o E. Crabb, 65, South Primrose Hill. Chelmaford.

> TECHNICAL TRAINING

A M.IE E. t ms, over 9SZ successes; inr full delails of modern courses in all branclies of electriral technology send for*our 112 -page handbook, iree and post iree. B.I.E.T. (Dept 388A). 17. Stratlord Place London, WOOKS, INSTRUCTIONS, ETC.
R ADAR Engineering, Fink, 42/-; Principles R of Rader, M.I.T.. 30/: Terman, Radio Lngineers Handbook, 42/-i Henney, Radio Engineer Handbook, $42 /-$; Colvin, Araerica Machinista Handbook, 36 ard Bandbook or Electrical Engineers. 60/ this offer includes tateskadrance in price over are in stock at H. G. Baskett. 201, Ux tions are in stock at H. G. Baskett, 201, Ux
Uridgo Rd., West Faling. W. 13.

How to make
 " $\mathrm{Hi}-\mathrm{Fi}_{i} "$

Apart from the shortage of materials we have to export an appreciable proportion of what we make. This means that many of the citizens of this small country of ours have to " make do and mend" if they want Hartley-Turner reproduction, which is natural and realistic even if it sounds somewhat different from other hi-fi.
A general grasp of the whole problem can be got by reading " New Notes in Radio" (5th edition, 3:8, post free) which is now recognised as of the same high standard as everything else we produce.
Our promised leaflet service is nearly ready and it will be supplemented by a series of Technical Bulletins (details of which will be sent on request) giving every detail of the construction of our equipment. These and the necessary component parts will be ready during February
Alas-you will still have to buy the Hartley-Turner Speaker (price 69) for neither you nor anyone else can make it and there just isn't any substitute. But at least it is available in somewhat limited quantities.

H. A. HARTLEY CO. LTD
 152. HAMMERSMITH RD., LONDON, W. 6 RIVerside 7387

L.R.S IN STOCK

AVOMETERS

Model 7 Cash price $£ 1910$ 0
Avominor AC/DC Unlversal meter... $8810 \quad 0$
Valve tester, complete
Avominor DC meter
Osellator, mains $\$ 16100$

- 130

Please let us have your enquiry for other models
All Avometers avalable on convenient terms Morphy Richards Auto Elostric Irons. Chrome superb quality 39/6 post 1/-
lllustrated list of any of the above items $1 d$.
The LONDON RADIO SUPPLY Co. (The L.R. Supply Co. Ltd.) Est. 1925 BALCOMBE

SUSSEX

IRON DUST
 CORED COILS

of Exceptional Efficiency and Stability AERIAL AND OSCILLATOR , bort, medlum, or tong wave, alze 1 la . x in 7,6 pair.
aErial AMD OSCDLiATOR, medium or lode wave. Ize 1 ln . x tin. 6,9 palr.
DUAL WAVE COILS, medium and long ware aerla. ad
1.F. TRANSFORMERS, Standard Frequeney 465 Kc / a Size, 1 ln d dam. $\times 1 \mathrm{ln}$. high. $9 / 6$ esch. MNLATURE ROTARY SWITCB, 4 pole, 3 way. 3/9
CONDEFSERS, Surered Mica, . 0001 mfd., 4^{\prime} - doz AVOMETER Model 7, $819 / 10 \%$.
All colls atted vith adjutitule troe corm, and rapo-jed rith oircoit diagram.
rERM8 : Canb with order or C.O.D. on ordoriover 81.
MONOCHORD RADIO
17 Streatham Hill, London S.W. Pbone: Tulee H!! 1051/2

VIBRO-ARC
 \section*{Engtans, atehes, matis} mrites.... ox
 DRASS COPPER SLFVER, NICKEL

ELECTRIC METAL ENGRYIMG PEN ALTMTNIOM, CHROMTUK Eardened Sted

H1 w 246 High St. Harlesden kwie Operstes
from 4 or 6 voll Aceumalator or C. Transformer Ordar C.O.D. or C.W.O.
Distr
 inothrivions
A. B. DAK
The wave change switch with silverplated double contacts.
A.B. METAL PRODUCTS LTD. Great South-West Road, Feltham. Middx.

PHOTO-ELECTRIC CELLS

for
Talking Picture Apparatus. Catalogue now available

RADIO-ELECTRONICS
 LTD.,

St. George's Works, South Norwood, London, S.E. 25.

MORSE CODE

 TIRAINING

There are Candler Morse Code Courses for
BEGINNERS AND OPERATORS. Send for this Free "BOOK OF FACTS"
It gives full details concerning all Courses.
THE CANDLER SYSTEM CO., (Room 55W), 121 Kingsway, London, W.C. 2 Candier Sus'em Co.. Denver. Colorado. U.S.A.

Thmorn
 ธouki

THE COMPLETE SERVICE FOR SOUND RECORDING AND REPRODUCTION

\star Mobile and Static Continuous Recording Ourfics.

* Recording Amplifiers.
ネ Moving Coil and Crystal Microphones
* \star Sapphire Pointed Reproducing Styli and Cutters.
\star Blank Recording Discs from Sin. to 17in. Single or Double sided.
\star Light-weight moving iron, permanent sapphire and moving coi' pick-ups.
* Label and Envelope Service.
* A comprehensive range of accessories to meet every requirement of the sound recording engineer.
* And our latest development (or special interest to users of sapphire or delicate pick-ups)-The Simtrol.
This is a controlled micro-movement easily fitted for use with any type of pick-up to eliminate the danger of damage to the record or pick-up. This is achieved by a vernier lowering action of the pick-up head to the record.
Write for comprehensive lists or call at Recorder House for demonstration
RECORDER HOUSE, 48/50 GEORGE ST. PORTMAN SQUARE, LONDON, W.I.

Teledhone: WEL $2371 / 2$ Telegrams: Simsale, Wesdo. London

12, Pembroke 8treet, London, N.1. Terminus 4355 2/4, Manor Way, Boreham Wood, Herts.

Elstree 2138

Nen Models Available

By extending the range of Lustraphone MovingCoil Microphones, users anxious to obtain the best instrument for the
job will find in these models everything they want in terms of good reproduction and lasting dependability.

MOVING - COIL MICROPHONES Leaflet from

LUSTRAPHONE LIMITED

84, Balsize Lane, London. N.W. 3 Telephone: Hampstead 5389 and 5015

[^2]

THERE ARE MANY BRANDS OF SOLDER MADE IN U.S.A. - YET American manufacturers of radio
 GENERAL ELECTRIC
 COMPANY

 "The girls on our wiring line are loud in their praises of Ersin Multicore Solder. I find it superior to that which we are now using and the flux is non-corrosive. I have instructed our factory to switch over to Ersin Multicore Solder."
 STROMBERG-CARLSON COMPANY
 COCHISTER 3. HEV YORA
 Aughst 15,1947
 "We are using this on radio production lines with very good results. I belizve this is being used with greater success than other solder previously used. We hare proved to our own satisfaction that Ersin Solder is not corrosive."
 radio and phonograph corporation
 and electrical equipment prefer British made ERSIN multicore SOLDER
 Despite the fact that there are freight charges and duties to be paid on the importation into U.S.A. of Ersin Multicore Solder and its higher initial cost, many American radio concerns prefer to import this British made solder for use in the manufacture of their equipment. They find that the use of Ersin Multicore-which alone has 3 cores of extra-active non-corrosive Ersin flux-effects great savings in material and labour costs, giving high speed precision soldering without waste. It will pay you to use only Ersin Multicore Solder.

Emerson

Emerson

\because After testing your Multicore Solder on our production lines, we found it to be the fastest solder we ever used. One of its salient advantages is its extraordinary effectiveness in the soldering of tarnished metals.
oregon state college
SCHOOL OF SCIENCE
CORVALLIS. ORECON
May 15, 1947
"I hove found Ersin Multicore Solder excellent for electrical instrument work as the fuxing action is such that a minimum of solder is used in producing a neat job. I also use Ersin Solder in instrument construction where there is danger of distortion when heating with a flame. Joints mode in this manner with Ersin Solder have less solder on the outside of the work due to the excellent penetration of Ersin flux."
 Mulcicore Solder is supplied on nominal 7 lb. reels for use by manufac turers. Prices on application. The prices for the size I Carton illustrated, are detailed below :

Catalogue Ref. No.	Alloy Tin-Lead	s.W.G.	Approx. length per carton	List price per carton (subject)
C 16014	$60 / 40$	14	38 feet	s. d.
C 16018	$60 / 40$	18	102 feet	6
C 14013	$40 / 60$	13	25 feet	9
C 14016	$40 / 00$	16	53 feet	5
		10		

[^0]: -The description "atomic energy," now widely accepted, is somewhat misleading since the term describes energy derived from the pirclens of the atom. A better Retcription might have been "fiudiar energy." Atomic energy 5ifelensed whenever we burn petrol

[^1]:

[^2]: London, S.E.1. "Wlreless Wurld can be obtained abroad froin the following-Aubranlia Rnd Nzw Zgaiand: Gordon \& Goteh, Ltd. India: A. H, Wheeler \& Co.

